- 模型剪枝是应用非常广的一种模型压缩方法,其可以直接减少模型中的参数量。本文会对模型剪枝的定义、发展历程、分类以及算法原理进行详细的介绍。 模型剪枝是应用非常广的一种模型压缩方法,其可以直接减少模型中的参数量。本文会对模型剪枝的定义、发展历程、分类以及算法原理进行详细的介绍。
- k-近邻(kNN,k-Nearest Neighbors)算法是一种基于实例的分类方法。该方法就是找出与未知样本x距离最近的k个训练样本,看这k个样本中多数属于哪一类,就把x归为那一类。k-近邻方法是一种懒惰学习方法,它存放样本,直到需要分类时才进行分类,如果样本集比较复杂,可能会导致很大的计算开销,因此无法应用到实时性很强的场合。 k-近邻(kNN,k-Nearest Neighbors)算法是一种基于实例的分类方法。该方法就是找出与未知样本x距离最近的k个训练样本,看这k个样本中多数属于哪一类,就把x归为那一类。k-近邻方法是一种懒惰学习方法,它存放样本,直到需要分类时才进行分类,如果样本集比较复杂,可能会导致很大的计算开销,因此无法应用到实时性很强的场合。
- 总结 YOLOv3 的改进点如下: 使用金字塔网络来实现多尺度预测,从而解决小目标检测的问题。 借鉴残差网络来实现更深的 Darknet-53,从而提升模型检测准确率。 使用 sigmoid 函数替代 softmax 激活来实现多标签分类器。 位置预测修改,一个 gird 预测 3 个 box。 总结 YOLOv3 的改进点如下: 使用金字塔网络来实现多尺度预测,从而解决小目标检测的问题。 借鉴残差网络来实现更深的 Darknet-53,从而提升模型检测准确率。 使用 sigmoid 函数替代 softmax 激活来实现多标签分类器。 位置预测修改,一个 gird 预测 3 个 box。
- YOLOv2 比 YOLOv1 的改进点 YOLOv2 比 YOLOv1 的改进点
- YOLOv1 出自 2016 CVPR 论文 You Only Look Once:Unified, Real-Time Object Detection. YOLO 系列算法的核心思想是将输入的图像经过 backbone 提取特征后,将得到特征图划分为 S x S 的网格,物体的中心落在哪一个网格内,这个网格就负责预测该物体的置信度、类别以及坐标位置。 YOLOv1 出自 2016 CVPR 论文 You Only Look Once:Unified, Real-Time Object Detection. YOLO 系列算法的核心思想是将输入的图像经过 backbone 提取特征后,将得到特征图划分为 S x S 的网格,物体的中心落在哪一个网格内,这个网格就负责预测该物体的置信度、类别以及坐标位置。
- FPN(feature pyramid networks) 是何凯明等作者提出的适用于多尺度目标检测算法。本篇文章是论文阅读笔记和网络理解心得总结而来,部分资料和图参考论文和网络资料。 FPN(feature pyramid networks) 是何凯明等作者提出的适用于多尺度目标检测算法。本篇文章是论文阅读笔记和网络理解心得总结而来,部分资料和图参考论文和网络资料。
- 本文总结分类和回归任务的常用损失函数,比如重点解析了交叉熵损失函数的由来,并给出详细计算公式和、案例分析、代码,同时也描述了 MAE 和 MSE 损失函数。 本文总结分类和回归任务的常用损失函数,比如重点解析了交叉熵损失函数的由来,并给出详细计算公式和、案例分析、代码,同时也描述了 MAE 和 MSE 损失函数。
- 本文分析了激活函数对于神经网络的必要性,同时讲解了几种常见的激活函数的原理,并给出相关公式、代码和示例图。 本文分析了激活函数对于神经网络的必要性,同时讲解了几种常见的激活函数的原理,并给出相关公式、代码和示例图。
- 神经网络模型一般是依靠随机梯度下降优化算法进行神经网络参数更新的,而神经网络参数的学习是非凸问题,利用梯度下降算法优化参数时,网络权重参数的初始值选取十分关键。 神经网络模型一般是依靠随机梯度下降优化算法进行神经网络参数更新的,而神经网络参数的学习是非凸问题,利用梯度下降算法优化参数时,网络权重参数的初始值选取十分关键。
- > 本文大部分内容来自《深度学习》(花书)第三章概率与信息论,从中抽取重要的知识点,并对部分概念和原理加以自己的总结,适合当作原书的补充资料阅读,也可当作快速阅览机器学习原理基础知识的参考资料。 > 本文大部分内容来自《深度学习》(花书)第三章概率与信息论,从中抽取重要的知识点,并对部分概念和原理加以自己的总结,适合当作原书的补充资料阅读,也可当作快速阅览机器学习原理基础知识的参考资料。
- 首先所谓过拟合,指的是一个模型过于复杂之后,它可以很好地“记忆”每一个训练数据中随机噪音的部分而忘记了去“训练”数据中的通用趋势。训练好后的模型过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。 首先所谓过拟合,指的是一个模型过于复杂之后,它可以很好地“记忆”每一个训练数据中随机噪音的部分而忘记了去“训练”数据中的通用趋势。训练好后的模型过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。
- 内容包含深度学习算法常见的面试题。在只有一个通道的情况下,“卷积核”(“kernel”)就相当于滤波器(“filter”),这两个概念是可以互换的。一个 “Kernel” 更倾向于是 2D 的权重矩阵。而 “filter” 则是指多个 kernel 堆叠的 3D 结构。如果是一个 2D 的 filter,那么两者就是一样的。 内容包含深度学习算法常见的面试题。在只有一个通道的情况下,“卷积核”(“kernel”)就相当于滤波器(“filter”),这两个概念是可以互换的。一个 “Kernel” 更倾向于是 2D 的权重矩阵。而 “filter” 则是指多个 kernel 堆叠的 3D 结构。如果是一个 2D 的 filter,那么两者就是一样的。
- Pytorch 中,张量的操作分为结构操作和数学运算,其理解就如字面意思。结构操作就是改变张量本身的结构,数学运算就是对张量的元素值完成数学运算。 Pytorch 中,张量的操作分为结构操作和数学运算,其理解就如字面意思。结构操作就是改变张量本身的结构,数学运算就是对张量的元素值完成数学运算。
- 本文为对目前线性量化优点、原理、方法和实战内容的总结,主要参考 神经网络量化简介 并加以自己的理解和总结,适合初学者阅读和自身复习用。 本文为对目前线性量化优点、原理、方法和实战内容的总结,主要参考 神经网络量化简介 并加以自己的理解和总结,适合初学者阅读和自身复习用。
- TensorRT 是 NVIDIA 官方推出的基于 CUDA 和 cudnn 的高性能深度学习推理加速引擎,能够使深度学习模型在 GPU 上进行低延迟、高吞吐量的部署。 TensorRT 是 NVIDIA 官方推出的基于 CUDA 和 cudnn 的高性能深度学习推理加速引擎,能够使深度学习模型在 GPU 上进行低延迟、高吞吐量的部署。
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签