- 深度学习和计算机视觉方向除了算法训练/研究,还有两个重要的方向: 模型压缩(模型优化、量化)、模型部署(模型转换、后端功能SDK开发)。所谓模型部署,即将算法研究员训练出的模型部署到具体的端边云芯片平台上,并完成特定业务的视频结构化应用开发。 深度学习和计算机视觉方向除了算法训练/研究,还有两个重要的方向: 模型压缩(模型优化、量化)、模型部署(模型转换、后端功能SDK开发)。所谓模型部署,即将算法研究员训练出的模型部署到具体的端边云芯片平台上,并完成特定业务的视频结构化应用开发。
- 我们知道,在一定程度上,网络越深,参数越多,模型越复杂,其最终效果越好。神经网络的压缩算法是,旨在将一个庞大而复杂的预训练模型(pre-trained model)转化为一个精简的小模型。 按照压缩过程对网络结构的破坏程度,我们将模型压缩技术分为“前端压缩”和“后端压缩”两部分。 前端压缩,是指在不改变原网络结构的压缩技术,主要包括知识蒸馏、轻量级网络(紧凑的模型结构设计)以及滤波器(filte 我们知道,在一定程度上,网络越深,参数越多,模型越复杂,其最终效果越好。神经网络的压缩算法是,旨在将一个庞大而复杂的预训练模型(pre-trained model)转化为一个精简的小模型。 按照压缩过程对网络结构的破坏程度,我们将模型压缩技术分为“前端压缩”和“后端压缩”两部分。 前端压缩,是指在不改变原网络结构的压缩技术,主要包括知识蒸馏、轻量级网络(紧凑的模型结构设计)以及滤波器(filte
- 终端设备上运行深度学习算法需要考虑内存和算力的需求,因此需要进行模型复杂度分析,涉及到模型计算量(时间/计算复杂度)和模型参数量(空间复杂度)分析。 终端设备上运行深度学习算法需要考虑内存和算力的需求,因此需要进行模型复杂度分析,涉及到模型计算量(时间/计算复杂度)和模型参数量(空间复杂度)分析。
- 查准率和查全率是一对矛盾的的度量。一般来说,查全率高时,查准率往往偏低;而查全率高时,查准率往往偏低。通常只有在一些简单任务中,才可能使查全率和查准率都很好高。精准率和召回率的关系可以用一个 P-R 图来展示,以查准率 P 为纵轴、查全率 R 为横轴作图,就得到了查准率-查全率曲线,简称 P-R 曲线,PR 曲线下的面积定义为 AP。 查准率和查全率是一对矛盾的的度量。一般来说,查全率高时,查准率往往偏低;而查全率高时,查准率往往偏低。通常只有在一些简单任务中,才可能使查全率和查准率都很好高。精准率和召回率的关系可以用一个 P-R 图来展示,以查准率 P 为纵轴、查全率 R 为横轴作图,就得到了查准率-查全率曲线,简称 P-R 曲线,PR 曲线下的面积定义为 AP。
- @toc参考论文:EfficientNetV2: Smaller Models and Faster Training Mingxing Tan, Quoc V. Le 1、EfficientNetV2简介 图 1. ImageNet ILSVRC2012 top-1 准确度与训练时间和参数的关系——标记为 21k 的模型在 ImageNet21k 上进行了预训练,而其他模型则直接在 Im... @toc参考论文:EfficientNetV2: Smaller Models and Faster Training Mingxing Tan, Quoc V. Le 1、EfficientNetV2简介 图 1. ImageNet ILSVRC2012 top-1 准确度与训练时间和参数的关系——标记为 21k 的模型在 ImageNet21k 上进行了预训练,而其他模型则直接在 Im...
- @toc参考论文:Revisiting ResNets: Improved Training and Scaling Strategies 作者:Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas, Tsung-Yi Lin, Jonathon Shlens, Barret Zoph这里主要是架构复现... @toc参考论文:Revisiting ResNets: Improved Training and Scaling Strategies 作者:Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas, Tsung-Yi Lin, Jonathon Shlens, Barret Zoph这里主要是架构复现...
- 机器学习的本质属于应用统计学,其更多地关注如何用计算机统计地估计复杂函数,而不太关注为这些函数提供置信区间,大部分机器学习算法可以分成监督学习和无监督学习两类;通过组合不同的算法部分,例如优化算法、代价函数、模型和数据集可以建立一个完整的机器学习算法。 机器学习的本质属于应用统计学,其更多地关注如何用计算机统计地估计复杂函数,而不太关注为这些函数提供置信区间,大部分机器学习算法可以分成监督学习和无监督学习两类;通过组合不同的算法部分,例如优化算法、代价函数、模型和数据集可以建立一个完整的机器学习算法。
- K 近邻算法(KNN)是一种基本分类和回归方法。KNN 算法的核心思想是如果一个样本在特征空间中的 k 个最相邻的样本中的大多数属于一个类别,那该样本也属于这个类别,并具有这个类别上样本的特性。 K 近邻算法(KNN)是一种基本分类和回归方法。KNN 算法的核心思想是如果一个样本在特征空间中的 k 个最相邻的样本中的大多数属于一个类别,那该样本也属于这个类别,并具有这个类别上样本的特性。
- Low level 特征是较低级别的特征,主要是原始特征,不需要或者需要很少的人工处理和干预,例如文本中的词向量特征,图像特征中的像素点大小,用户 id,商品 id等。High level 特征是经过比较复杂的处理,结合部分业务逻辑或者规则、模型得到的特征,例如人工打分,模型打分等特征,可以用于较复杂的非线性模型。 Low level 特征是较低级别的特征,主要是原始特征,不需要或者需要很少的人工处理和干预,例如文本中的词向量特征,图像特征中的像素点大小,用户 id,商品 id等。High level 特征是经过比较复杂的处理,结合部分业务逻辑或者规则、模型得到的特征,例如人工打分,模型打分等特征,可以用于较复杂的非线性模型。
- 原文链接论文地址:https://arxiv.org/pdf/1501.04587.pdf 摘要阻碍CNN应用于视觉跟踪的主要障碍是缺乏适当标记的训练数据。虽然释放CNN功率的现有应用程序通常需要大量数百万的训练数据,但是视觉跟踪应用程序通常在每个视频的第一帧中仅具有一个标记的示例。我们通过离线预培训CNN,然后将学到的丰富特征层次结构转移到在线跟踪来解决此研究问题。 CNN还在在线跟踪期间... 原文链接论文地址:https://arxiv.org/pdf/1501.04587.pdf 摘要阻碍CNN应用于视觉跟踪的主要障碍是缺乏适当标记的训练数据。虽然释放CNN功率的现有应用程序通常需要大量数百万的训练数据,但是视觉跟踪应用程序通常在每个视频的第一帧中仅具有一个标记的示例。我们通过离线预培训CNN,然后将学到的丰富特征层次结构转移到在线跟踪来解决此研究问题。 CNN还在在线跟踪期间...
- @toc 1、最近邻算法 最近邻算法是一种基于实例的学习,或者是局部近似和将所有计算推迟到分类之后的惰性学习,可以用于基本的分类与回归方法。 如下图所示,最近邻算法的工作原理是==存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样... @toc 1、最近邻算法 最近邻算法是一种基于实例的学习,或者是局部近似和将所有计算推迟到分类之后的惰性学习,可以用于基本的分类与回归方法。 如下图所示,最近邻算法的工作原理是==存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样...
- @toc 1、数据集说明 这里完成一个中文微博情感分类项目。这里我使用的数据集是从新浪微博收集的 12 万条数据,正负样本各一半。标签中 1 表示正面评论,0 表示负面评论。数据来源为https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/weibo_sen ti_100k/intro.ipynb。如果你有其他... @toc 1、数据集说明 这里完成一个中文微博情感分类项目。这里我使用的数据集是从新浪微博收集的 12 万条数据,正负样本各一半。标签中 1 表示正面评论,0 表示负面评论。数据来源为https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/weibo_sen ti_100k/intro.ipynb。如果你有其他...
- @toc 1、数据集说明 这里完成一个中文微博情感分类项目。这里我使用的数据集是从新浪微博收集的 12 万条数据,正负样本各一半。标签中 1 表示正面评论,0 表示负面评论。数据来源为https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/weibo_sen ti_100k/intro.ipynb如果你有其他数... @toc 1、数据集说明 这里完成一个中文微博情感分类项目。这里我使用的数据集是从新浪微博收集的 12 万条数据,正负样本各一半。标签中 1 表示正面评论,0 表示负面评论。数据来源为https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/weibo_sen ti_100k/intro.ipynb如果你有其他数...
- @toc参考论文:EfficientNetV2: Smaller Models and Faster Training Mingxing Tan, Quoc V. Le 1、EfficientNetV2简介 图 1. ImageNet ILSVRC2012 top-1 准确度与训练时间和参数的关系——标记为 21k 的模型在 ImageNet21k 上进行了预训练,而其他模型则直接在 Im... @toc参考论文:EfficientNetV2: Smaller Models and Faster Training Mingxing Tan, Quoc V. Le 1、EfficientNetV2简介 图 1. ImageNet ILSVRC2012 top-1 准确度与训练时间和参数的关系——标记为 21k 的模型在 ImageNet21k 上进行了预训练,而其他模型则直接在 Im...
- @toc参考论文:Designing Network Design Spaces作者:Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, ==Kaiming He==, Piotr Dollár我看了下,这个有两篇论文,一篇是Designing Network Design Spaces,另一篇是Fast and Accurate ... @toc参考论文:Designing Network Design Spaces作者:Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, ==Kaiming He==, Piotr Dollár我看了下,这个有两篇论文,一篇是Designing Network Design Spaces,另一篇是Fast and Accurate ...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签