- 本文介绍柯依力 YOLO 训练调优,包括 NPU 环境准备与训练,如创建桶、授权、Notebook 等;精度对齐,用 msprobe 工具定位解决精度问题;性能调优,用 advisor 工具解决亲和 API 等问题;还给出训练加速参数推荐配置,提升训练效率。 本文介绍柯依力 YOLO 训练调优,包括 NPU 环境准备与训练,如创建桶、授权、Notebook 等;精度对齐,用 msprobe 工具定位解决精度问题;性能调优,用 advisor 工具解决亲和 API 等问题;还给出训练加速参数推荐配置,提升训练效率。
- 阅读短文您可以学习到:人工智能AI图像识别的图像识别、名人识别 阅读短文您可以学习到:人工智能AI图像识别的图像识别、名人识别
- 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。图像锐化和边缘检测主要包括一阶微分锐化和二阶微分锐化,本文主要讲解常见的图像锐化和边缘检测方法,即Scharr算子、Canny算子和LOG算子。希望文章对您有所帮助! 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。图像锐化和边缘检测主要包括一阶微分锐化和二阶微分锐化,本文主要讲解常见的图像锐化和边缘检测方法,即Scharr算子、Canny算子和LOG算子。希望文章对您有所帮助!
- 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,上一篇文章介绍图像锐化的Roberts算子和Prewitt算子。这篇文章将继续讲解图像锐化知识,希望对您有所帮助。 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,上一篇文章介绍图像锐化的Roberts算子和Prewitt算子。这篇文章将继续讲解图像锐化知识,希望对您有所帮助。
- 当我们处理的数据具有不同尺度时,执行数据标准化操作是很有必要的。本文给出了数据标准化(Normalization)的定义、常用方法以及为什么要做数据标准化,并给出相关代码实现。最后将Normalization概念应用于图像领域,并给出实现的相关细节以及示例代码。 当我们处理的数据具有不同尺度时,执行数据标准化操作是很有必要的。本文给出了数据标准化(Normalization)的定义、常用方法以及为什么要做数据标准化,并给出相关代码实现。最后将Normalization概念应用于图像领域,并给出实现的相关细节以及示例代码。
- 数据增强(也叫数据扩增)的目的是为了扩充数据和提升模型的泛化能力。有效的数据扩充不仅能扩充训练样本数量,还能增加训练样本的多样性,一方面可避免过拟合,另一方面又会带来模型性能的提升。 数据增强(也叫数据扩增)的目的是为了扩充数据和提升模型的泛化能力。有效的数据扩充不仅能扩充训练样本数量,还能增加训练样本的多样性,一方面可避免过拟合,另一方面又会带来模型性能的提升。
- ModelBox开发案例 - 使用YOLO v3做口罩检测本案例将使用YOLO v3模型,实现一个简单的口罩检测应用,最终效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从mask_det_yolo3下载(提取码为modbox),该目录中的资源列表说明如下:desc.toml # 资源描述common.zip # 公共数据,包括测试数据、cpu功能单元等rknpu.zi... ModelBox开发案例 - 使用YOLO v3做口罩检测本案例将使用YOLO v3模型,实现一个简单的口罩检测应用,最终效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从mask_det_yolo3下载(提取码为modbox),该目录中的资源列表说明如下:desc.toml # 资源描述common.zip # 公共数据,包括测试数据、cpu功能单元等rknpu.zi...
- An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering论文地址:https://arxiv.org/abs/2103.03390 论文提出了一种新颖的有效损失函数,用于评估重建的 3D 点云的投影覆盖地面实况对象轮廓的程度。然后使用 Poisson Surface R... An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering论文地址:https://arxiv.org/abs/2103.03390 论文提出了一种新颖的有效损失函数,用于评估重建的 3D 点云的投影覆盖地面实况对象轮廓的程度。然后使用 Poisson Surface R...
- 人脸到动漫脸的转换与控制一种稳定、可控、多样化的图像到图像转换(也适用于视频!)使用方法:点击上方菜单,选择 Run(运行) - Run All Cells(运行所有) 第一步 准备代码环境import os! wget https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/clf/code/GANsNRoses.zipos.s... 人脸到动漫脸的转换与控制一种稳定、可控、多样化的图像到图像转换(也适用于视频!)使用方法:点击上方菜单,选择 Run(运行) - Run All Cells(运行所有) 第一步 准备代码环境import os! wget https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/clf/code/GANsNRoses.zipos.s...
- CenterNet-Hourglass (物体检测/Pytorch)目标检测常采用Anchor的方法来获取物体可能存在的位置,再对该位置进行分类,这样的做法耗时、低效,同时需要后处理(比如NMS)。CenterNet将目标看成一个点,即目标bounding box的中心点,整个问题转变成了关键点估计问题,其他目标属性,比如尺寸、3D位置、方向和姿态等都以估计的中心点为基准进行参数回归。本案... CenterNet-Hourglass (物体检测/Pytorch)目标检测常采用Anchor的方法来获取物体可能存在的位置,再对该位置进行分类,这样的做法耗时、低效,同时需要后处理(比如NMS)。CenterNet将目标看成一个点,即目标bounding box的中心点,整个问题转变成了关键点估计问题,其他目标属性,比如尺寸、3D位置、方向和姿态等都以估计的中心点为基准进行参数回归。本案...
- CycleGAN是图像转换的代表作,样本数据无需配对即可实现转换。例如斑马转换成马、将模特转换成卡通人物等。CycleGAN特点就是通过一个循环,首先将图像从一个域转换到另一个域,然后,再转回来,如果两次转换都很精准的话,那么,转换后的图像应该与输入的图像基本一致。通过这样的的一个循环,CycleGAN将转换前后图片的配对,类似于有监督学习,提升了转换效果。 CycleGAN是图像转换的代表作,样本数据无需配对即可实现转换。例如斑马转换成马、将模特转换成卡通人物等。CycleGAN特点就是通过一个循环,首先将图像从一个域转换到另一个域,然后,再转回来,如果两次转换都很精准的话,那么,转换后的图像应该与输入的图像基本一致。通过这样的的一个循环,CycleGAN将转换前后图片的配对,类似于有监督学习,提升了转换效果。
- pix2pix论文链接: https://arxiv.org/abs/1611.07004图像处理的很多问题都是将一张输入的图片转变为一张对应的输出图片,比如灰度图、梯度图、彩色图之间的转换等。通常每一种问题都使用特定的算法(如:使用CNN来解决图像转换问题时,要根据每个问题设定一个特定的loss function 来让CNN去优化,而一般的方法都是训练CNN去缩小输入跟输出的欧氏距离,但... pix2pix论文链接: https://arxiv.org/abs/1611.07004图像处理的很多问题都是将一张输入的图片转变为一张对应的输出图片,比如灰度图、梯度图、彩色图之间的转换等。通常每一种问题都使用特定的算法(如:使用CNN来解决图像转换问题时,要根据每个问题设定一个特定的loss function 来让CNN去优化,而一般的方法都是训练CNN去缩小输入跟输出的欧氏距离,但...
- Stable Diffusion文字生成图像 🎨 Stable Diffusion 是由 CompVis、Stability AI 和 LAION 共同开发的一个文本转图像模型,它通过 LAION-5B 子集大量的 512x512 图文模型进行训练,我们只要简单的输入一段文本,Stable Diffusion 就可以迅速将其转换为图像,同样我们也可以置入图片或视频,配合文本对其进行处理。 Stable Diffusion文字生成图像 🎨 Stable Diffusion 是由 CompVis、Stability AI 和 LAION 共同开发的一个文本转图像模型,它通过 LAION-5B 子集大量的 512x512 图文模型进行训练,我们只要简单的输入一段文本,Stable Diffusion 就可以迅速将其转换为图像,同样我们也可以置入图片或视频,配合文本对其进行处理。
- 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,上一篇文章介绍图像灰度直方图对比分析。这篇文章将继续讲解图像掩膜直方图和HS直方图,并分享一个通过直方图判断白天与黑夜的案例。希望文章对您有所帮助,如果有不足之处,还请海涵。 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,上一篇文章介绍图像灰度直方图对比分析。这篇文章将继续讲解图像掩膜直方图和HS直方图,并分享一个通过直方图判断白天与黑夜的案例。希望文章对您有所帮助,如果有不足之处,还请海涵。
- 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,前面的文章详细介绍了图像灰度变换和阈值变换。本篇文章将结合直方图分别对比图像灰度变换前后的变化,方便读者更清晰地理解灰度变换和阈值变换。希望文章对您有所帮助,如果有不足之处,还请海涵。 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,前面的文章详细介绍了图像灰度变换和阈值变换。本篇文章将结合直方图分别对比图像灰度变换前后的变化,方便读者更清晰地理解灰度变换和阈值变换。希望文章对您有所帮助,如果有不足之处,还请海涵。
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
即将直播 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签