- 引言本节我们简单的介绍一下多层神经网络,以及其中在误差反向传播算法或者过拟合抑制技术的一些应用与实战~~~ 多层神经网络概述多层神经网络(MLP)是深度学习中的一种基础模型,由多个线性和非线性变换层组成。网络的每一层都由多个神经元组成,每个神经元接收前一层输出的加权和,并通过激活函数进行非线性转换在Python中,我们可以使用深度学习框架(如PyTorch)来快速实现一个多层神经网络。下面... 引言本节我们简单的介绍一下多层神经网络,以及其中在误差反向传播算法或者过拟合抑制技术的一些应用与实战~~~ 多层神经网络概述多层神经网络(MLP)是深度学习中的一种基础模型,由多个线性和非线性变换层组成。网络的每一层都由多个神经元组成,每个神经元接收前一层输出的加权和,并通过激活函数进行非线性转换在Python中,我们可以使用深度学习框架(如PyTorch)来快速实现一个多层神经网络。下面...
- 引言 在机器学习的广阔领域中,k-近邻算法(K-Nearest Neighbors, KNN)以其简单易懂和直观的特性,成为了许多初学者和专业人士的首选算法之一。作为一种基于实例的学习方法,k-近邻算法不需要复杂的模型训练过程,而是通过存储训练数据并在预测时进行距离计算来进行分类或回归。这种方法使得k-近邻算法在处理小规模数据集时表现出色,尤其在图像识别、推荐系统和医疗诊断等应用场景中得... 引言 在机器学习的广阔领域中,k-近邻算法(K-Nearest Neighbors, KNN)以其简单易懂和直观的特性,成为了许多初学者和专业人士的首选算法之一。作为一种基于实例的学习方法,k-近邻算法不需要复杂的模型训练过程,而是通过存储训练数据并在预测时进行距离计算来进行分类或回归。这种方法使得k-近邻算法在处理小规模数据集时表现出色,尤其在图像识别、推荐系统和医疗诊断等应用场景中得...
- 单算子API调用方式,是指直接调用单算子API接口,基于C语言的API执行算子。算子工程AscendC从入门到精通系列(三)基于自定义算子工程开发AscendC算子 - 知乎 (zhihu.com)创建完成后,基于工程代码框架完成算子原型定义、kernel侧算子实现、host侧tiling实现,通过工程编译脚本完成算子的编译部署,之后再进行单算子API的调用。 1 基本原理完成自定义算子编译... 单算子API调用方式,是指直接调用单算子API接口,基于C语言的API执行算子。算子工程AscendC从入门到精通系列(三)基于自定义算子工程开发AscendC算子 - 知乎 (zhihu.com)创建完成后,基于工程代码框架完成算子原型定义、kernel侧算子实现、host侧tiling实现,通过工程编译脚本完成算子的编译部署,之后再进行单算子API的调用。 1 基本原理完成自定义算子编译...
- 如果已经通过Ascend C编程语言实现了算子,那该如何通过pybind进行调用呢? 1 Pybind调用介绍通过PyTorch框架进行模型的训练、推理时,会调用很多算子进行计算,其中的调用方式与kernel编译流程有关。对于自定义算子工程,需要使用PyTorch Ascend Adapter中的OP-Plugin算子插件对功能进行扩展,让torch可以直接调用自定义算子包中的算子,详细内容... 如果已经通过Ascend C编程语言实现了算子,那该如何通过pybind进行调用呢? 1 Pybind调用介绍通过PyTorch框架进行模型的训练、推理时,会调用很多算子进行计算,其中的调用方式与kernel编译流程有关。对于自定义算子工程,需要使用PyTorch Ascend Adapter中的OP-Plugin算子插件对功能进行扩展,让torch可以直接调用自定义算子包中的算子,详细内容...
- 本次主要讨论下AscendC算子的开发流程,基于Kernel直调工程的算子开发。 1 AscendC算子开发的基本流程使用Ascend C完成Add算子核函数开发;使用ICPU_RUN_KF CPU调测宏完成算子核函数CPU侧运行验证;使用<<<>>>内核调用符完成算子核函数NPU侧运行验证。在正式的开发之前,还需要先完成环境准备和算子分析工作,开发Ascend C算子的基本流程如下图所示:... 本次主要讨论下AscendC算子的开发流程,基于Kernel直调工程的算子开发。 1 AscendC算子开发的基本流程使用Ascend C完成Add算子核函数开发;使用ICPU_RUN_KF CPU调测宏完成算子核函数CPU侧运行验证;使用<<<>>>内核调用符完成算子核函数NPU侧运行验证。在正式的开发之前,还需要先完成环境准备和算子分析工作,开发Ascend C算子的基本流程如下图所示:...
- Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,兼具开发效率和运行性能。基于Ascend C编写的算子程序,通过编译器编译和运行时调度,运行在昇腾AI处理器上。使用Ascend C,开发者可以基于昇腾AI硬件,高效的实现自定义的创新算法。 Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,兼具开发效率和运行性能。基于Ascend C编写的算子程序,通过编译器编译和运行时调度,运行在昇腾AI处理器上。使用Ascend C,开发者可以基于昇腾AI硬件,高效的实现自定义的创新算法。
- 在计算机科学和深度学习领域,算子 tiling(有时也被称作操作符 tiling 或者循环 tiling)是一种优化技术,主要用于提高计算效率,尤其是在处理大规模张量运算时。Tiling 技术通常用于将大的计算任务分解成更小的块,这些小块可以在内存中更高效地处理,或者更适合并行计算环境。 在计算机科学和深度学习领域,算子 tiling(有时也被称作操作符 tiling 或者循环 tiling)是一种优化技术,主要用于提高计算效率,尤其是在处理大规模张量运算时。Tiling 技术通常用于将大的计算任务分解成更小的块,这些小块可以在内存中更高效地处理,或者更适合并行计算环境。
- Ascend Transformer Boost加速库(下文简称为ATB加速库)是一款高效、可靠的加速库,基于华为Ascend AI处理器,专门为Transformer类模型的训练和推理而设计 Ascend Transformer Boost加速库(下文简称为ATB加速库)是一款高效、可靠的加速库,基于华为Ascend AI处理器,专门为Transformer类模型的训练和推理而设计
- Ascend Transformer Boost加速库(下文简称为ATB加速库)是一款高效、可靠的加速库,基于华为Ascend AI处理器,专门为Transformer类模型的训练和推理而设计。 Ascend Transformer Boost加速库(下文简称为ATB加速库)是一款高效、可靠的加速库,基于华为Ascend AI处理器,专门为Transformer类模型的训练和推理而设计。
- PageAttention的引入主要是为了解决大型语言模型(LLM)在服务过程中遇到的内存管理低效问题 PageAttention的引入主要是为了解决大型语言模型(LLM)在服务过程中遇到的内存管理低效问题
- 1 SelfAttention是什么?Self-Attention(自注意力)机制是深度学习领域的一种重要技术,尤其在自然语言处理(NLP)任务中得到广泛应用。它是 Transformer 架构的核心组成部分之一,由 Vaswani 等人在 2017 年提出的论文《Attention is All You Need》中首次介绍。Self-Attention 机制使模型能够在处理序列数据时关... 1 SelfAttention是什么?Self-Attention(自注意力)机制是深度学习领域的一种重要技术,尤其在自然语言处理(NLP)任务中得到广泛应用。它是 Transformer 架构的核心组成部分之一,由 Vaswani 等人在 2017 年提出的论文《Attention is All You Need》中首次介绍。Self-Attention 机制使模型能够在处理序列数据时关...
- win+r打开并输入cmd回车打开终端在终端中输入以下代码进行安装。 win+r打开并输入cmd回车打开终端在终端中输入以下代码进行安装。
- 最右侧是ResNet-34,命名为ResNet-34,是因为网络中7×7卷积层、3×3卷积层和全连接层共34层。在计算这个34层时,论文作者并没有将BatchNorm、ReLU、AvgPool以及Shortcut中的层考虑进去。右侧ResNet-34中的3×3卷积层的颜色不同,共4种颜色。每种颜色表示一个模块,由一组残差基础块组成,只不过残差基础块的数量不同,从上到下依次是。 最右侧是ResNet-34,命名为ResNet-34,是因为网络中7×7卷积层、3×3卷积层和全连接层共34层。在计算这个34层时,论文作者并没有将BatchNorm、ReLU、AvgPool以及Shortcut中的层考虑进去。右侧ResNet-34中的3×3卷积层的颜色不同,共4种颜色。每种颜色表示一个模块,由一组残差基础块组成,只不过残差基础块的数量不同,从上到下依次是。
- 深度学习在AIGC中的关键角色:技术解析AIGC(AI生成内容,Artificial Intelligence Generated Content)是当前人工智能领域的重要突破,应用在文本、图像、音频和视频等内容生成方面。深度学习技术在AIGC中扮演了核心角色,它提供了强大的模型和算法,能够自动学习数据中的模式并生成新的内容。本文将从深度学习技术的基本原理、在AIGC中的应用,以及相关的代... 深度学习在AIGC中的关键角色:技术解析AIGC(AI生成内容,Artificial Intelligence Generated Content)是当前人工智能领域的重要突破,应用在文本、图像、音频和视频等内容生成方面。深度学习技术在AIGC中扮演了核心角色,它提供了强大的模型和算法,能够自动学习数据中的模式并生成新的内容。本文将从深度学习技术的基本原理、在AIGC中的应用,以及相关的代...
- 1.算法运行效果图预览(完整程序运行后无水印) 贝叶斯优化过程贝叶斯优化后的CNN训练和识别结果标准的CNN的识别结果2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)% 使用贝叶斯优化算法确定最优的批次大小和学习率[MBsize, Lr] = func_BOA(); % 构建卷积神经网络layers = func_model(Nclas... 1.算法运行效果图预览(完整程序运行后无水印) 贝叶斯优化过程贝叶斯优化后的CNN训练和识别结果标准的CNN的识别结果2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)% 使用贝叶斯优化算法确定最优的批次大小和学习率[MBsize, Lr] = func_BOA(); % 构建卷积神经网络layers = func_model(Nclas...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签