- 简 介: 近年来,深度学习在交通安全、无人驾驶等领域被广泛研究与应用,而车辆检测作为其中不可或缺的一环,被人们所重点关注。本文基于YOLOV3 网络对其不同骨网进行了训练与分析,最终实现了对交通车辆... 简 介: 近年来,深度学习在交通安全、无人驾驶等领域被广泛研究与应用,而车辆检测作为其中不可或缺的一环,被人们所重点关注。本文基于YOLOV3 网络对其不同骨网进行了训练与分析,最终实现了对交通车辆...
- 为了让菜鸡的自己学习更有方向感,本文贴上各厂的推荐算法岗位的要求 (ps:本文既不是广告问也不是内推文!!!)。 文章目录 算法工程师的工作流程(王喆)一、不知哪个厂:二、联通研究院三、阿里巴巴... 为了让菜鸡的自己学习更有方向感,本文贴上各厂的推荐算法岗位的要求 (ps:本文既不是广告问也不是内推文!!!)。 文章目录 算法工程师的工作流程(王喆)一、不知哪个厂:二、联通研究院三、阿里巴巴...
- 学习总结 (1)这次task的模型看似没啥新东西(embedding+MLP),但是对于tensorflow不熟悉,还有需要注意特征处理:类别型特征 Embedding 化,数值型特征直接输入 MLP。... 学习总结 (1)这次task的模型看似没啥新东西(embedding+MLP),但是对于tensorflow不熟悉,还有需要注意特征处理:类别型特征 Embedding 化,数值型特征直接输入 MLP。...
- 背景介绍 这几年图神经网络模型(如谱聚类的GCN、GAT等等)都挺火的,这些图神经网络即将节点或图映射到一个低维空间(称为图嵌入);而除了GNN还有很多图嵌入方法(在GNN之前图嵌入的概念常出现在流行学... 背景介绍 这几年图神经网络模型(如谱聚类的GCN、GAT等等)都挺火的,这些图神经网络即将节点或图映射到一个低维空间(称为图嵌入);而除了GNN还有很多图嵌入方法(在GNN之前图嵌入的概念常出现在流行学...
- 学习总结 (1)上一个task我们提到用embedding召回,快速过滤商品,缩小候选集。但是embedding相似度如果都用余弦计算,当数据量很大时计算量很大。所以提出用【局部敏感哈希LSH】解决高维... 学习总结 (1)上一个task我们提到用embedding召回,快速过滤商品,缩小候选集。但是embedding相似度如果都用余弦计算,当数据量很大时计算量很大。所以提出用【局部敏感哈希LSH】解决高维...
- 学习总结 YouTube推荐架构=召回层(多,快)+排序层(少,精)。候选集生成模型:用了Embedding MLP,注意最后的多分类的输出层,预测的是用户点击了“哪个”视频。线上服务时,需要从输出层提... 学习总结 YouTube推荐架构=召回层(多,快)+排序层(少,精)。候选集生成模型:用了Embedding MLP,注意最后的多分类的输出层,预测的是用户点击了“哪个”视频。线上服务时,需要从输出层提...
- 学习总结 (1)本次task学习Embedding中的Deep Walk和Node2vec算法,和Embedding在推荐系统的三种应用:直接应用、预训练应用和End2End训练应用。 (2)Deep ... 学习总结 (1)本次task学习Embedding中的Deep Walk和Node2vec算法,和Embedding在推荐系统的三种应用:直接应用、预训练应用和End2End训练应用。 (2)Deep ...
- 学习心得 (1)Word2vec 的研究中提出的模型结构、目标函数、负采样方法、负采样中的目标函数在后续的研究中被重复使用并被屡次优化。掌握 Word2vec 中的每一个细节成了研究 Embedding... 学习心得 (1)Word2vec 的研究中提出的模型结构、目标函数、负采样方法、负采样中的目标函数在后续的研究中被重复使用并被屡次优化。掌握 Word2vec 中的每一个细节成了研究 Embedding...
- 这个系列是学习王喆的【深度学习推荐系统实战】时做的笔记和自己的学习总结。 文章目录 零、一个栗子的引入一、学习目标和要求1.学习目标2.课前要求 二、课程体系1.基础架构篇2.特征工程篇3.线... 这个系列是学习王喆的【深度学习推荐系统实战】时做的笔记和自己的学习总结。 文章目录 零、一个栗子的引入一、学习目标和要求1.学习目标2.课前要求 二、课程体系1.基础架构篇2.特征工程篇3.线...
- 这篇博文 记录 各种模型 预处理,后续会逐步扩展补充 该博文 – 属于 模型推理 和 模型部署领域 文章目录 pytorch 和 onnx 模型... 这篇博文 记录 各种模型 预处理,后续会逐步扩展补充 该博文 – 属于 模型推理 和 模型部署领域 文章目录 pytorch 和 onnx 模型...
- ReLU 函数,也就是max(x,0) ,是最常见的激活函数之一,然而它在 处的不可导通常也被视为一个“槽点”。为此,有诸多的光滑近似被提出,比如 SoftPlus、GeLU、Swish 等,不过这些光滑近似无一例外地至少都使用了指数运算 (SoftPlus 还用到了对数),从“精打细算”的角度来看,计算量还是不... ReLU 函数,也就是max(x,0) ,是最常见的激活函数之一,然而它在 处的不可导通常也被视为一个“槽点”。为此,有诸多的光滑近似被提出,比如 SoftPlus、GeLU、Swish 等,不过这些光滑近似无一例外地至少都使用了指数运算 (SoftPlus 还用到了对数),从“精打细算”的角度来看,计算量还是不...
- 🥇 版权: 本文由【墨理学AI】原创、在CSDN首发、各位大佬、敬请查阅🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️❤️ 如果文章对你有帮助、欢迎一键三连 ... 🥇 版权: 本文由【墨理学AI】原创、在CSDN首发、各位大佬、敬请查阅🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️❤️ 如果文章对你有帮助、欢迎一键三连 ...
- 论文链接:https://arxiv.org/pdf/2201.03545.pdf 代码链接:https://github.com/facebookresearch/ConvNeXt 最小的模型100m ConvNeXt-S224x22478.722M4.3G Abstract ViT伴随着视觉的“20年代”咆哮而来,迅速的碾压... 论文链接:https://arxiv.org/pdf/2201.03545.pdf 代码链接:https://github.com/facebookresearch/ConvNeXt 最小的模型100m ConvNeXt-S224x22478.722M4.3G Abstract ViT伴随着视觉的“20年代”咆哮而来,迅速的碾压...
- 面向不会使用PS的非专业人士: 有趣的超分重建–4倍放大–应用场景说明 letsenhance 2 、4、8 倍 超分重建,图像增强pixfix 图像降噪、修复 这种纯粹的图像处理,目前是... 面向不会使用PS的非专业人士: 有趣的超分重建–4倍放大–应用场景说明 letsenhance 2 、4、8 倍 超分重建,图像增强pixfix 图像降噪、修复 这种纯粹的图像处理,目前是...
- 初识移动端深度学习推理框架MNN | MNN1.2版本编译安装 | 示例工程测试 初识移动端深度学习推理框架MNN MNN 正确编译和安装 【1.2版本】 ... 初识移动端深度学习推理框架MNN | MNN1.2版本编译安装 | 示例工程测试 初识移动端深度学习推理框架MNN MNN 正确编译和安装 【1.2版本】 ...
上滑加载中
推荐直播
-
华为云师资培训——《大数据》课程
2025/08/12 周二 15:00-17:00
贺行简-DTSE开发者技术专家 吕晨-DTSE开发者技术专家
华为云师资培训直播,带您掌握产业级大数据课程体系与华为开发者空间实战能力,助力高校数字化转型!
回顾中
热门标签