- 推荐不准等于骚扰?AI是如何精准推荐你爱看的内容的 推荐不准等于骚扰?AI是如何精准推荐你爱看的内容的
- 基于Python的白酒数据推荐系统1. 引言中国白酒市场品类繁多、消费需求个性化显著,用户常面临“选择困难”。传统推荐依赖人工经验或简单销量排序,难以精准匹配用户偏好。本系统基于Python生态,融合协同过滤、内容推荐与深度学习技术,构建智能化白酒推荐引擎,旨在提升用户发现心仪产品的效率,同时助力酒企优化营销策略。2. 技术背景2.1 核心技术栈数据处理:Pa... 基于Python的白酒数据推荐系统1. 引言中国白酒市场品类繁多、消费需求个性化显著,用户常面临“选择困难”。传统推荐依赖人工经验或简单销量排序,难以精准匹配用户偏好。本系统基于Python生态,融合协同过滤、内容推荐与深度学习技术,构建智能化白酒推荐引擎,旨在提升用户发现心仪产品的效率,同时助力酒企优化营销策略。2. 技术背景2.1 核心技术栈数据处理:Pa...
- 引言在数字化时代,音乐已成为人们生活中不可或缺的一部分。随着音乐流媒体平台的兴起,如何在海量的音乐库中为用户提供个性化的音乐推荐,提升用户体验,已成为一个重要的研究方向。传统的推荐算法在处理大规模数据和复杂用户偏好时,存在一定的局限性。近年来,深度学习的快速发展为构建智能化的音乐推荐系统提供了新的思路。本文将详细介绍如何基于深度学习技术,构建一个个性化的音乐推荐系统。我们将从数据收集、模型... 引言在数字化时代,音乐已成为人们生活中不可或缺的一部分。随着音乐流媒体平台的兴起,如何在海量的音乐库中为用户提供个性化的音乐推荐,提升用户体验,已成为一个重要的研究方向。传统的推荐算法在处理大规模数据和复杂用户偏好时,存在一定的局限性。近年来,深度学习的快速发展为构建智能化的音乐推荐系统提供了新的思路。本文将详细介绍如何基于深度学习技术,构建一个个性化的音乐推荐系统。我们将从数据收集、模型...
- 在介绍推荐系统网络之前,先了解一下推荐系统的基本架构包括用户画像、召回、粗排、精排与混排五个模块。其中用户画像主要是构建用户兴趣,通过用户的行为日志信息识别出用户的兴趣(包括长期与短期兴趣)、行为统计信息、用户DPM信息、用户体验反馈等;召回主要是指通过多种算法来从数据库中筛选出候选集,主要用来降低后续排序环节中候选集的规模,将百万级的数据集缩小至千级别的规模,主要包括ICF、UCF等CF类... 在介绍推荐系统网络之前,先了解一下推荐系统的基本架构包括用户画像、召回、粗排、精排与混排五个模块。其中用户画像主要是构建用户兴趣,通过用户的行为日志信息识别出用户的兴趣(包括长期与短期兴趣)、行为统计信息、用户DPM信息、用户体验反馈等;召回主要是指通过多种算法来从数据库中筛选出候选集,主要用来降低后续排序环节中候选集的规模,将百万级的数据集缩小至千级别的规模,主要包括ICF、UCF等CF类...
- 基于 Flink 的实时推荐系统引言 (Foreword/Motivation)传统的推荐系统通常依赖于离线批量处理用户行为数据,每天或每周更新一次推荐结果。然而,用户的兴趣和行为是实时变化的。用户刚刚产生的行为(如点击、浏览、购买)往往是预测其当前兴趣的最有力信号。将这些实时行为数据纳入推荐计算过程,可以显著提高推荐的新鲜度和相关性,为用户提供更及时、更个性化的推荐体验。这就是实时推荐系统... 基于 Flink 的实时推荐系统引言 (Foreword/Motivation)传统的推荐系统通常依赖于离线批量处理用户行为数据,每天或每周更新一次推荐结果。然而,用户的兴趣和行为是实时变化的。用户刚刚产生的行为(如点击、浏览、购买)往往是预测其当前兴趣的最有力信号。将这些实时行为数据纳入推荐计算过程,可以显著提高推荐的新鲜度和相关性,为用户提供更及时、更个性化的推荐体验。这就是实时推荐系统...
- Django 基于 Python 的酒店推荐系统 介绍酒店推荐系统是一种基于用户的偏好和历史行为,为用户提供个性化酒店推荐的系统。通过 Django 框架,我们可以构建一个强大的 Web 应用程序,整合推荐算法,实现智能化的酒店推荐服务。 应用使用场景在线旅游平台:为用户提供个性化的酒店推荐,提升用户体验。企业出行管理:帮助企业员工快速找到符合公司政策的住宿。旅行社系统:提供定制化的旅游行... Django 基于 Python 的酒店推荐系统 介绍酒店推荐系统是一种基于用户的偏好和历史行为,为用户提供个性化酒店推荐的系统。通过 Django 框架,我们可以构建一个强大的 Web 应用程序,整合推荐算法,实现智能化的酒店推荐服务。 应用使用场景在线旅游平台:为用户提供个性化的酒店推荐,提升用户体验。企业出行管理:帮助企业员工快速找到符合公司政策的住宿。旅行社系统:提供定制化的旅游行...
- @[TOC](文章目录)---# 前言推荐系统是现代互联网平台中的重要组成部分,它可以根据用户的兴趣和行为,向其推荐个性化的内容。协同过滤是推荐系统中常用的一种方法,它基于用户的行为数据,通过计算用户之间的相似度,找到相似用户的喜好,从而给用户推荐相似的内容。 # 一、协同过滤算法简介协同过滤是一种基于用户和物品之间关系的推荐算法。它主要分为两类:基于用户的协同过滤(User-Based C... @[TOC](文章目录)---# 前言推荐系统是现代互联网平台中的重要组成部分,它可以根据用户的兴趣和行为,向其推荐个性化的内容。协同过滤是推荐系统中常用的一种方法,它基于用户的行为数据,通过计算用户之间的相似度,找到相似用户的喜好,从而给用户推荐相似的内容。 # 一、协同过滤算法简介协同过滤是一种基于用户和物品之间关系的推荐算法。它主要分为两类:基于用户的协同过滤(User-Based C...
- 在这个信息爆炸的时代,AI驱动的个性化推荐系统应运而生,通过数据收集与处理、构建用户画像、核心算法(协同过滤与基于内容的推荐)及深度学习技术,精准洞察用户需求。它广泛应用于电商、视频平台等领域,提升用户体验和商业效益。尽管面临数据稀疏性、隐私保护等挑战,未来将更加精准、实时并注重用户隐私。 在这个信息爆炸的时代,AI驱动的个性化推荐系统应运而生,通过数据收集与处理、构建用户画像、核心算法(协同过滤与基于内容的推荐)及深度学习技术,精准洞察用户需求。它广泛应用于电商、视频平台等领域,提升用户体验和商业效益。尽管面临数据稀疏性、隐私保护等挑战,未来将更加精准、实时并注重用户隐私。
- 1、概要推荐系统时使用广泛的技术之一,尤其在电商领域中,使用非常频繁。推荐系统涉及多种专业术语和算法。2、数据说明2.1 用户列表所有用户构成的集合,主要是用户id。 例如电影推荐中的所有观影人users.dat数据:uid::性别::年龄::职业::邮编----------------------1::F::1::10::480672::M::56::16::700723::M::25::... 1、概要推荐系统时使用广泛的技术之一,尤其在电商领域中,使用非常频繁。推荐系统涉及多种专业术语和算法。2、数据说明2.1 用户列表所有用户构成的集合,主要是用户id。 例如电影推荐中的所有观影人users.dat数据:uid::性别::年龄::职业::邮编----------------------1::F::1::10::480672::M::56::16::700723::M::25::...
- 第三章 系统设计开发平台随着云计算的不断发现、很多业务已经已经本地机房搬迁到了各种云环境、之前很多需要自己本地构筑的服务、现在已经有很多的SaaS服务。最经典的是Office365的服务、之前很多企业都是自己构筑本地的Exchange服务器。现在更多的选择是使用Office365在线的邮箱服务。机器学习做为新代一技术的代表当然也有很多在线的平台可以使用阿里云机器学习服务 ... 第三章 系统设计开发平台随着云计算的不断发现、很多业务已经已经本地机房搬迁到了各种云环境、之前很多需要自己本地构筑的服务、现在已经有很多的SaaS服务。最经典的是Office365的服务、之前很多企业都是自己构筑本地的Exchange服务器。现在更多的选择是使用Office365在线的邮箱服务。机器学习做为新代一技术的代表当然也有很多在线的平台可以使用阿里云机器学习服务 ...
- 第一章 绪论课题背景现在的互联网环境中计算机技术的不断更新、手机等移动设备不断的更新换代、越来越多的人开始使用互联网(玛丽·米克尔发布了2018年的互联网趋势报告中指出中国的互联网用户数已经达到了8.29亿)、越来越多的功能提供给我们在使用着(中国市场上监测到应用程序上架数量达到449万款)、同时互联网络的数据也越来越多(中国互联接入流量消耗达到711.1亿GB),我们在使用过程发现自己的可... 第一章 绪论课题背景现在的互联网环境中计算机技术的不断更新、手机等移动设备不断的更新换代、越来越多的人开始使用互联网(玛丽·米克尔发布了2018年的互联网趋势报告中指出中国的互联网用户数已经达到了8.29亿)、越来越多的功能提供给我们在使用着(中国市场上监测到应用程序上架数量达到449万款)、同时互联网络的数据也越来越多(中国互联接入流量消耗达到711.1亿GB),我们在使用过程发现自己的可...
- 华为云推荐系统于2018年10月30日 00:00(北京时间) 转商通知 华为云推荐系统于2018年10月30日 00:00(北京时间) 转商通知
- 文章目录 一、回顾word2vec中的负采样1.1 滑动窗口1.2 目标函数1.3 预测函数 二、word2vec中的负采样实现三、推荐系统中召回相关基础3.1 召回中的三种训练方式(1)Po... 文章目录 一、回顾word2vec中的负采样1.1 滑动窗口1.2 目标函数1.3 预测函数 二、word2vec中的负采样实现三、推荐系统中召回相关基础3.1 召回中的三种训练方式(1)Po...
- 学习总结 ESMM首创了利用用户行为序列数据在完整样本空间建模,并提出利用学习CTR和CTCVR的辅助任务,迂回学习CVR,避免了传统CVR模型经常遭遇的样本选择偏差和训练数据稀疏的问题,取得了显著的效... 学习总结 ESMM首创了利用用户行为序列数据在完整样本空间建模,并提出利用学习CTR和CTCVR的辅助任务,迂回学习CVR,避免了传统CVR模型经常遭遇的样本选择偏差和训练数据稀疏的问题,取得了显著的效...
- 文章目录 一、个性化推荐的成功应用的两个条件二、音乐推荐的特点1、物品空间大2、消费每首歌的代价很小3、物品种类丰富4、听一首歌耗时很少5、物品重用率很高6、用户充满激情7、上下文相关8、次序很重... 文章目录 一、个性化推荐的成功应用的两个条件二、音乐推荐的特点1、物品空间大2、消费每首歌的代价很小3、物品种类丰富4、听一首歌耗时很少5、物品重用率很高6、用户充满激情7、上下文相关8、次序很重...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签