- 利用用户行为数据 如何了解一个人呢? 通过用户留下的文字和行为了解用户兴趣和需求。 实现个性化推荐的最理想情况是用户在注册的时候主动告知其喜欢什么。 3个缺点: 现在的自然语言理解技术很难理解用户用来描述兴趣的自然语言; 用户的兴趣是不断变化的; 很多时候用户并不知道自己喜欢什么,或者很难用语言描述。 基于用户行为分析的推荐算法是个性化推荐系统的重... 利用用户行为数据 如何了解一个人呢? 通过用户留下的文字和行为了解用户兴趣和需求。 实现个性化推荐的最理想情况是用户在注册的时候主动告知其喜欢什么。 3个缺点: 现在的自然语言理解技术很难理解用户用来描述兴趣的自然语言; 用户的兴趣是不断变化的; 很多时候用户并不知道自己喜欢什么,或者很难用语言描述。 基于用户行为分析的推荐算法是个性化推荐系统的重...
- 作者:知乎用户链接:https://www.zhihu.com/question/22237507/answer/53804902 来源:https://www.zhihu.com/question/22237507/answer/60991654 矩阵奇异值的物理意义是什么? 或者说,奇异值形象一点的意义是什么? 把m*n矩阵看作从m维空间到n维空间的一个线性映射... 作者:知乎用户链接:https://www.zhihu.com/question/22237507/answer/53804902 来源:https://www.zhihu.com/question/22237507/answer/60991654 矩阵奇异值的物理意义是什么? 或者说,奇异值形象一点的意义是什么? 把m*n矩阵看作从m维空间到n维空间的一个线性映射...
- 由于本人今年毕业,为完成毕设特地想着实现一个简单的推荐系统设计,思来想去,小电影不就是很好的切入点嘛! 于是诞生该项目,将会一步步带着大家实现一个自己的电影推荐系统. 1 研究目标 从应用场景来看,基于内容的推荐算法更多地适用于用户根据关键字或者电影名字来搜索相应的电影,然后推荐系统来进行相应的推荐。 基于需求个性角度来看,基于内容的推荐算法还不够个人化,用户需要的... 由于本人今年毕业,为完成毕设特地想着实现一个简单的推荐系统设计,思来想去,小电影不就是很好的切入点嘛! 于是诞生该项目,将会一步步带着大家实现一个自己的电影推荐系统. 1 研究目标 从应用场景来看,基于内容的推荐算法更多地适用于用户根据关键字或者电影名字来搜索相应的电影,然后推荐系统来进行相应的推荐。 基于需求个性角度来看,基于内容的推荐算法还不够个人化,用户需要的...
- 0 系列文章目录 0.1 基于协同过滤算法的电影推荐系统设计(一) - 项目简介 0.2 基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍 ALS是alternating least squares的缩写 , 意为交替最小二乘法,而ALS-WR是alternating-least-squares with weighted-λ -regularizati... 0 系列文章目录 0.1 基于协同过滤算法的电影推荐系统设计(一) - 项目简介 0.2 基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍 ALS是alternating least squares的缩写 , 意为交替最小二乘法,而ALS-WR是alternating-least-squares with weighted-λ -regularizati...
- ML之RS:基于用户的CF+LFM实现的推荐系统(基于相关度较高的用户实现电影推荐) 目录 输出结果 实现代码 输出结果 实现代码 #ML之RS:基于CF和LFM实现的推荐系统import numpy as npimport pandas as pdimport matplotlib.pyplot as... ML之RS:基于用户的CF+LFM实现的推荐系统(基于相关度较高的用户实现电影推荐) 目录 输出结果 实现代码 输出结果 实现代码 #ML之RS:基于CF和LFM实现的推荐系统import numpy as npimport pandas as pdimport matplotlib.pyplot as...
- 推荐系统是一种信息过滤技术,通过从用户行为中挖掘用户兴趣偏好,为用户提供个性化的信息,减少用户的找寻时间,降低用户的决策成本,让用户更加被动地消费信息。推荐系统是随着互联网技术的发展及应用深入而出现的,并在当前得到广泛的关注,它是一种软件解决方案,是toC互联网产品上的一个模块。用户通过与推荐模块交互,推荐系统通过提供的web服务,将与用户兴趣匹配的标的物筛选出来,组装成合适的数据结构,最终... 推荐系统是一种信息过滤技术,通过从用户行为中挖掘用户兴趣偏好,为用户提供个性化的信息,减少用户的找寻时间,降低用户的决策成本,让用户更加被动地消费信息。推荐系统是随着互联网技术的发展及应用深入而出现的,并在当前得到广泛的关注,它是一种软件解决方案,是toC互联网产品上的一个模块。用户通过与推荐模块交互,推荐系统通过提供的web服务,将与用户兴趣匹配的标的物筛选出来,组装成合适的数据结构,最终...
- 知乎从问答起步,已逐步成长为一个大规模的综合性知识内容平台,截止目前,用户数突破 2.2 亿,有超过 3000 万的问题被提出,并获得超过 1.3 亿个回答。同时,知乎内还沉淀了数量众多的优质文章、电子书以及其它付费内容。因此,在链接人与知识的路径中,知乎存在着大量的推荐场景。粗略统计,目前除了首页推荐之外,我们已存在着 20 多种推荐场景;并且在业务快速发展中,不断有新的推荐业务需求加入。... 知乎从问答起步,已逐步成长为一个大规模的综合性知识内容平台,截止目前,用户数突破 2.2 亿,有超过 3000 万的问题被提出,并获得超过 1.3 亿个回答。同时,知乎内还沉淀了数量众多的优质文章、电子书以及其它付费内容。因此,在链接人与知识的路径中,知乎存在着大量的推荐场景。粗略统计,目前除了首页推荐之外,我们已存在着 20 多种推荐场景;并且在业务快速发展中,不断有新的推荐业务需求加入。...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签