- 学习总结 (1)深度推荐模型的前沿趋势,强化学习(Reinforcement Learning,又叫增强学习)与深度推荐模型的结合。强化学习的大体过程:通过训练一个智能体(它与环境交互,不断学习并强化自... 学习总结 (1)深度推荐模型的前沿趋势,强化学习(Reinforcement Learning,又叫增强学习)与深度推荐模型的结合。强化学习的大体过程:通过训练一个智能体(它与环境交互,不断学习并强化自...
- 第30届国际信息与知识管理大会(The 30th ACM International Conference on Information and Knowledge Management, CIKM 20... 第30届国际信息与知识管理大会(The 30th ACM International Conference on Information and Knowledge Management, CIKM 20...
- 学习心得 (1)首先学习了经典推荐算法协同过滤的深度学习进化版本 NerualCF。相比于矩阵分解算法,NeuralCF 用一个多层的神经网络,替代了矩阵分解算法中简单的点积操作,让用户和物品隐向量之间... 学习心得 (1)首先学习了经典推荐算法协同过滤的深度学习进化版本 NerualCF。相比于矩阵分解算法,NeuralCF 用一个多层的神经网络,替代了矩阵分解算法中简单的点积操作,让用户和物品隐向量之间...
- 学习总结 (1)业界主流的模型服务方法有 4 种,分别是预存推荐结果或 Embeding 结果、预训练 Embeding+ 轻量级线上模型、利用 PMML 转换和部署模型以及 TensorFlow Se... 学习总结 (1)业界主流的模型服务方法有 4 种,分别是预存推荐结果或 Embeding 结果、预训练 Embeding+ 轻量级线上模型、利用 PMML 转换和部署模型以及 TensorFlow Se...
- 学习总结 (1)GraphSAGE 的主要步骤是三步“采样 - 聚合 - 预测”: 采样是指在整体图数据上随机确定中心节点,采样 k 阶子图样本。聚合是指利用 GNN 把 k 阶子图样本聚合成中心节点... 学习总结 (1)GraphSAGE 的主要步骤是三步“采样 - 聚合 - 预测”: 采样是指在整体图数据上随机确定中心节点,采样 k 阶子图样本。聚合是指利用 GNN 把 k 阶子图样本聚合成中心节点...
- 学习总结 本次task学习深度学习模型系统的整体脉络,改进网络模型的常用手段:改变神经网络的复杂程度、改变特征交叉方式、把多种模型组合应用、结合交叉领域(如NLP、强化学习等)。整个深度学习推荐模型的演... 学习总结 本次task学习深度学习模型系统的整体脉络,改进网络模型的常用手段:改变神经网络的复杂程度、改变特征交叉方式、把多种模型组合应用、结合交叉领域(如NLP、强化学习等)。整个深度学习推荐模型的演...
- 学习心得 (1)从之前的开篇了解推荐系统要解决的核心问题,生发出深度学习推荐系统的技术,架构篇的学习是从抽象到具体,从形而上到形而下的过程。这个task先把Sparrow推荐系统跑通,一开始IDEA识别... 学习心得 (1)从之前的开篇了解推荐系统要解决的核心问题,生发出深度学习推荐系统的技术,架构篇的学习是从抽象到具体,从形而上到形而下的过程。这个task先把Sparrow推荐系统跑通,一开始IDEA识别...
- 学习总结 上次学习的一坨推荐系统的离线评估指标和方法,离线评估不能还原线上的所有变量,如视频网站需要提高的【用户观看时长】指标等。几乎所有的互联网公司,线上 A/B 测试都是验证新模型、新功能、新产品是... 学习总结 上次学习的一坨推荐系统的离线评估指标和方法,离线评估不能还原线上的所有变量,如视频网站需要提高的【用户观看时长】指标等。几乎所有的互联网公司,线上 A/B 测试都是验证新模型、新功能、新产品是...
- 学习总结 第一步是导入 Spark 分割好的训练集和测试集。 第二步是在 TensorFlow 中设置评估指标,再在测试集上调用 model.evaluate 函数计算这些评估指标。这里使用了最常用的 ... 学习总结 第一步是导入 Spark 分割好的训练集和测试集。 第二步是在 TensorFlow 中设置评估指标,再在测试集上调用 model.evaluate 函数计算这些评估指标。这里使用了最常用的 ...
- 学习总结 (1)这次task的模型看似没啥新东西(embedding+MLP),但是对于tensorflow不熟悉,还有需要注意特征处理:类别型特征 Embedding 化,数值型特征直接输入 MLP。... 学习总结 (1)这次task的模型看似没啥新东西(embedding+MLP),但是对于tensorflow不熟悉,还有需要注意特征处理:类别型特征 Embedding 化,数值型特征直接输入 MLP。...
- 学习总结 (1)上一个task我们提到用embedding召回,快速过滤商品,缩小候选集。但是embedding相似度如果都用余弦计算,当数据量很大时计算量很大。所以提出用【局部敏感哈希LSH】解决高维... 学习总结 (1)上一个task我们提到用embedding召回,快速过滤商品,缩小候选集。但是embedding相似度如果都用余弦计算,当数据量很大时计算量很大。所以提出用【局部敏感哈希LSH】解决高维...
- 学习总结 YouTube推荐架构=召回层(多,快)+排序层(少,精)。候选集生成模型:用了Embedding MLP,注意最后的多分类的输出层,预测的是用户点击了“哪个”视频。线上服务时,需要从输出层提... 学习总结 YouTube推荐架构=召回层(多,快)+排序层(少,精)。候选集生成模型:用了Embedding MLP,注意最后的多分类的输出层,预测的是用户点击了“哪个”视频。线上服务时,需要从输出层提...
- 学习总结 (1)LREM将用于从列表 key 中删除前 count 个值等于 element 的元素。 这个 count 参数通过下面几种方式影响这个操作,如果count > 0, 从头到尾删除值... 学习总结 (1)LREM将用于从列表 key 中删除前 count 个值等于 element 的元素。 这个 count 参数通过下面几种方式影响这个操作,如果count > 0, 从头到尾删除值...
- 学习总结 协同过滤(Collaborative Filtering)及其衍生的模型,和深度学习推荐系统密切相关。 协同过滤:协同大家的反馈、评价和意见,对海量的信息进行过滤,从中筛选出用户感兴趣信息的一... 学习总结 协同过滤(Collaborative Filtering)及其衍生的模型,和深度学习推荐系统密切相关。 协同过滤:协同大家的反馈、评价和意见,对海量的信息进行过滤,从中筛选出用户感兴趣信息的一...
- 学习心得 (1)本次task学习了推荐系统中特征处理的主要方式,并利用 Spark 实践了类别型特征和数值型特征的主要处理方法,深度学习和传统机器学习的区别并不大,TensorFlow、PyTorch ... 学习心得 (1)本次task学习了推荐系统中特征处理的主要方式,并利用 Spark 实践了类别型特征和数值型特征的主要处理方法,深度学习和传统机器学习的区别并不大,TensorFlow、PyTorch ...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签