- 1.算法运行效果图预览(完整程序运行后无水印) 本课题所用步态数据库: 测试结果如下: 步态能量图 识别率对比 上图识别率含义是: 1.使用0度的数据库进行训练,分别测试0度,45度,90度。 2.使用45度的数据库进行训练,分别测试0度,45度,90度。 3.使用90度的数据库进行训练,分别测试0度,45度,90度。 4.使用0度,45度,90度三种样本混合进行训练,分别测试混合样... 1.算法运行效果图预览(完整程序运行后无水印) 本课题所用步态数据库: 测试结果如下: 步态能量图 识别率对比 上图识别率含义是: 1.使用0度的数据库进行训练,分别测试0度,45度,90度。 2.使用45度的数据库进行训练,分别测试0度,45度,90度。 3.使用90度的数据库进行训练,分别测试0度,45度,90度。 4.使用0度,45度,90度三种样本混合进行训练,分别测试混合样...
- 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a/matlab2024b 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)%设置网络参数 lgraph=func_layers2(Dims,Dimso,X); %参数设置options = trainingOptions("adam",... 'Ini... 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a/matlab2024b 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)%设置网络参数 lgraph=func_layers2(Dims,Dimso,X); %参数设置options = trainingOptions("adam",... 'Ini...
- 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a/matlab2024b 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)X = woa_idx;%设置网络参数 %卷积核Nfilter = floor(X(1));%8; %卷积核大小Sfilter = floor(X(2));%5; %丢失因子drops = X(... 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a/matlab2024b 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)X = woa_idx;%设置网络参数 %卷积核Nfilter = floor(X(1));%8; %卷积核大小Sfilter = floor(X(2));%5; %丢失因子drops = X(...
- 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) figure;plot(gb1,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0... 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) figure;plot(gb1,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0...
- 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)figure;plot(gb1,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.... 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)figure;plot(gb1,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0....
- 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)figure;plot(gb1,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.... 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)figure;plot(gb1,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0....
- 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本MATLAB2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) figureplot(Error2,'linewidth',2);grid onxlabel('迭代次数');ylabel('遗传算法优化过程');legend('Average fitness'); [V,I] = min(JJ);X ... 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本MATLAB2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) figureplot(Error2,'linewidth',2);grid onxlabel('迭代次数');ylabel('遗传算法优化过程');legend('Average fitness'); [V,I] = min(JJ);X ...
- 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])]; gen = 0;Js = 0.5*rand(NIND,1);Objv = (Js+eps);gen = 0... 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])]; gen = 0;Js = 0.5*rand(NIND,1);Objv = (Js+eps);gen = 0...
- 1.算法运行效果图预览(完整程序运行后无水印)其整体性能优于基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真-CSDN博客 2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)while gen < MAXGEN gen Pe0 = 0.999; pe1 = 0.001; F... 1.算法运行效果图预览(完整程序运行后无水印)其整体性能优于基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真-CSDN博客 2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)while gen < MAXGEN gen Pe0 = 0.999; pe1 = 0.001; F...
- Python卷积神经网络(CNN)识别和计数工业零件:深入解析与应用 一、卷积神经网络(CNN)介绍卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,特别适合处理图像数据。它通过卷积层、池化层和全连接层等结构,能够自动提取图像特征,并进行分类、识别等任务。 二、应用使用场景CNN 在工业零件识别和计数方面有广泛的应用场景,例如:生产线零件检... Python卷积神经网络(CNN)识别和计数工业零件:深入解析与应用 一、卷积神经网络(CNN)介绍卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,特别适合处理图像数据。它通过卷积层、池化层和全连接层等结构,能够自动提取图像特征,并进行分类、识别等任务。 二、应用使用场景CNN 在工业零件识别和计数方面有广泛的应用场景,例如:生产线零件检...
- 卷积核(Convolutional Kernel)或称为过滤器(Filter)是卷积神经网络(Convolutional Neural Networks, CNNs)中的一个关键组成部分。卷积核是一个小型矩阵,通常用来在输入数据上滑动,从而对其进行卷积运算。卷积核的主要作用是提取输入数据中的特征,通过逐点与输入矩阵的元素进行加权求和,卷积核可以看作是一种滤波器,用来识别输入数据中的某些特定模... 卷积核(Convolutional Kernel)或称为过滤器(Filter)是卷积神经网络(Convolutional Neural Networks, CNNs)中的一个关键组成部分。卷积核是一个小型矩阵,通常用来在输入数据上滑动,从而对其进行卷积运算。卷积核的主要作用是提取输入数据中的特征,通过逐点与输入矩阵的元素进行加权求和,卷积核可以看作是一种滤波器,用来识别输入数据中的某些特定模...
- 神经架构搜索(NAS)在卷积神经网络(CNN)领域掀起革新,自动化生成最优架构,改变传统设计方式。其特点包括扩展搜索空间、优化搜索策略、提升性能、模型压缩及跨领域应用。NAS发现了超越人工设计的高性能架构,如EfficientNet,并在图像分类、目标检测和分割中取得显著成果。尽管面临计算资源消耗大和可解释性差的挑战,NAS仍为CNN的发展带来重大突破,推动深度学习广泛应用。 神经架构搜索(NAS)在卷积神经网络(CNN)领域掀起革新,自动化生成最优架构,改变传统设计方式。其特点包括扩展搜索空间、优化搜索策略、提升性能、模型压缩及跨领域应用。NAS发现了超越人工设计的高性能架构,如EfficientNet,并在图像分类、目标检测和分割中取得显著成果。尽管面临计算资源消耗大和可解释性差的挑战,NAS仍为CNN的发展带来重大突破,推动深度学习广泛应用。
- 自注意力卷积神经网络融合了自注意力机制和卷积神经网络的优势,通过在特征图上动态分配注意力权重,捕捉长距离依赖关系。它不仅提升了局部特征提取能力,还能更好地理解全局结构与语义信息,在图像识别、自然语言处理等任务中表现出色。此外,该模型计算效率高、灵活性强、适应性广,并且易于扩展与其他技术结合,具有广泛的应用前景。 自注意力卷积神经网络融合了自注意力机制和卷积神经网络的优势,通过在特征图上动态分配注意力权重,捕捉长距离依赖关系。它不仅提升了局部特征提取能力,还能更好地理解全局结构与语义信息,在图像识别、自然语言处理等任务中表现出色。此外,该模型计算效率高、灵活性强、适应性广,并且易于扩展与其他技术结合,具有广泛的应用前景。
- 在人工智能发展中,处理复杂时序图像/视频数据是难题。CNN擅长提取图像空间特征(如物体形状、位置),RNN/LSTM则善于捕捉时间依赖关系,解决长序列数据的梯度问题。两者结合,先用CNN提取每帧图像特征,再通过RNN/LSTM分析时间变化,可高效处理视频动作识别、自动驾驶等任务,融合空间与时序优势,展现巨大应用潜力。 在人工智能发展中,处理复杂时序图像/视频数据是难题。CNN擅长提取图像空间特征(如物体形状、位置),RNN/LSTM则善于捕捉时间依赖关系,解决长序列数据的梯度问题。两者结合,先用CNN提取每帧图像特征,再通过RNN/LSTM分析时间变化,可高效处理视频动作识别、自动驾驶等任务,融合空间与时序优势,展现巨大应用潜力。
- 卷积神经网络(CNN)中的权重共享和局部连接是其核心特性。权重共享通过同一卷积核在不同位置使用相同权重,减少参数量并提高泛化能力;局部连接则使每个神经元仅与输入的局部区域相连,专注于提取局部特征。两者相辅相成,显著降低计算复杂度,增强对空间结构的感知,使CNN在图像识别等领域表现出色。 卷积神经网络(CNN)中的权重共享和局部连接是其核心特性。权重共享通过同一卷积核在不同位置使用相同权重,减少参数量并提高泛化能力;局部连接则使每个神经元仅与输入的局部区域相连,专注于提取局部特征。两者相辅相成,显著降低计算复杂度,增强对空间结构的感知,使CNN在图像识别等领域表现出色。
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
苏州工业园区“华为云杯”2025人工智能应用创新大赛赛中直播
2025/08/21 周四 16:00-17:00
Vz 华为云AIoT技术布道师
本期直播将与您一起探讨如何基于华为云IoT平台全场景云服务,结合AI、鸿蒙、大数据等技术,打造有创新性,有竞争力的方案和产品。
即将直播
热门标签