- 洼道路检测对于地质勘探、航天科学和自然灾害等领域的研究和应用具有重要意义。深度学习技术的快速发展为坑洼道路检测提供的新途径。本文基于Resnet(Residual Networks)网络建立了Resnet-34模型对题目数据进行处理,实现了精度较高的道路图像坑洼状态的识别,并通过实验和其他模型如Resnet-50和EfficientNet进行相关指标的比较,较好地反映出该模型在坑洼道路检测上... 洼道路检测对于地质勘探、航天科学和自然灾害等领域的研究和应用具有重要意义。深度学习技术的快速发展为坑洼道路检测提供的新途径。本文基于Resnet(Residual Networks)网络建立了Resnet-34模型对题目数据进行处理,实现了精度较高的道路图像坑洼状态的识别,并通过实验和其他模型如Resnet-50和EfficientNet进行相关指标的比较,较好地反映出该模型在坑洼道路检测上...
- 通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!! 通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!
- 1.算法运行效果图预览 2.算法运行软件版本MATLAB2022A 3.算法理论概述 在无线通信系统中,调制信号的识别是一项重要的任务。通过识别接收到的信号的调制方式,可以对信号进行解调和解码,从而实现正确的数据传输和通信。卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,在图像和信号处理领域取得了显著的成功。 卷积神经网络... 1.算法运行效果图预览 2.算法运行软件版本MATLAB2022A 3.算法理论概述 在无线通信系统中,调制信号的识别是一项重要的任务。通过识别接收到的信号的调制方式,可以对信号进行解调和解码,从而实现正确的数据传输和通信。卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,在图像和信号处理领域取得了显著的成功。 卷积神经网络...
- 1.算法理论概述 本文将从专业角度详细介绍基于CNN卷积神经网络的图像分割。主要包括以下几个方面:图像分割的基本原理、CNN卷积神经网络的基本结构、训练数据集的准备、网络训练和测试等。 1.1 图像分割的基本原理 图像分割是将一幅图像分割为多个具有独立语义的区域的过程。图像分割可以应用于计算机视觉、医学图像分析、遥感图像处理等领域。图像分割的基本原理是将图像像素进... 1.算法理论概述 本文将从专业角度详细介绍基于CNN卷积神经网络的图像分割。主要包括以下几个方面:图像分割的基本原理、CNN卷积神经网络的基本结构、训练数据集的准备、网络训练和测试等。 1.1 图像分割的基本原理 图像分割是将一幅图像分割为多个具有独立语义的区域的过程。图像分割可以应用于计算机视觉、医学图像分析、遥感图像处理等领域。图像分割的基本原理是将图像像素进...
- 卷积神经网络(Convolutional Neural Network,CNN)是一种在计算机视觉和模式识别领域取得巨大成功的人工神经网络模型。它模仿了人类大脑的视觉处理机制,通过学习和提取图像中的特征来进行高效准确的图像分类、目标检测和图像生成等任务。本文将为初学者介绍卷积神经网络的基本原理、结构和常见应用,帮助读者理解和入门这一重要的深度学习算法。1. 卷积神经网络的基本原理卷积神经网络... 卷积神经网络(Convolutional Neural Network,CNN)是一种在计算机视觉和模式识别领域取得巨大成功的人工神经网络模型。它模仿了人类大脑的视觉处理机制,通过学习和提取图像中的特征来进行高效准确的图像分类、目标检测和图像生成等任务。本文将为初学者介绍卷积神经网络的基本原理、结构和常见应用,帮助读者理解和入门这一重要的深度学习算法。1. 卷积神经网络的基本原理卷积神经网络...
- 深度学习是一种人工神经网络的应用,其应用范围包括自然语言处理、计算机视觉、语音识别等等。其中,卷积神经网络(Convolutional Neural Network,CNN)是一种应用广泛的图像识别模型,其用于解决计算机视觉领域中的图像分类、目标检测、图像分割等问题。本文将详细介绍卷积神经网络的原理、结构和应用。 卷积神经网络的原理卷积神经网络是一种前馈神经网络,其主要特点是具有卷积层和池化... 深度学习是一种人工神经网络的应用,其应用范围包括自然语言处理、计算机视觉、语音识别等等。其中,卷积神经网络(Convolutional Neural Network,CNN)是一种应用广泛的图像识别模型,其用于解决计算机视觉领域中的图像分类、目标检测、图像分割等问题。本文将详细介绍卷积神经网络的原理、结构和应用。 卷积神经网络的原理卷积神经网络是一种前馈神经网络,其主要特点是具有卷积层和池化...
- YOLOv5 仅在 YOLOv4 发表一个月之后就公布了,这导致很多人对 YOLOv5 的命名有所质疑,因为相比于它的前代 YOLOv4,它在理论上并没有明显的差异,虽然集成了最近的很多新的创新,但是这些集成点又和 YOLOv4 类似。我个人觉得之所以出现这种命名冲突应该是发布的时候出现了 “撞车”,毕竟 YOLOv4 珠玉在前(早一个月),YOLOv5 也只能命名为 5 了。 YOLOv5 仅在 YOLOv4 发表一个月之后就公布了,这导致很多人对 YOLOv5 的命名有所质疑,因为相比于它的前代 YOLOv4,它在理论上并没有明显的差异,虽然集成了最近的很多新的创新,但是这些集成点又和 YOLOv4 类似。我个人觉得之所以出现这种命名冲突应该是发布的时候出现了 “撞车”,毕竟 YOLOv4 珠玉在前(早一个月),YOLOv5 也只能命名为 5 了。
- 本文为学习笔记,部分内容参考网上资料和论文而写的,内容涉及 Faster RCNN 网络结构理解和代码实现原理。 本文为学习笔记,部分内容参考网上资料和论文而写的,内容涉及 Faster RCNN 网络结构理解和代码实现原理。
- 本文深度讲解了卷积计算的原理,并详细介绍了构成所有卷积网络主干的基本元素,包括卷积层本身、填充和步幅的基本细节、用于在相邻区域汇聚信息的汇聚层,最后给出卷积层和汇聚层的代码示例和CNN框架结构图。 本文深度讲解了卷积计算的原理,并详细介绍了构成所有卷积网络主干的基本元素,包括卷积层本身、填充和步幅的基本细节、用于在相邻区域汇聚信息的汇聚层,最后给出卷积层和汇聚层的代码示例和CNN框架结构图。
- 写在前面:大家好!我是【AI 菌】,一枚爱弹吉他的程序员。我热爱AI、热爱分享、热爱开源! 这博客是我对学习的一点总结与记录。如果您也对 深度学习、机器视觉、算法、Python、C++ 感兴趣,可以关注我的动态,我们一起学习,一起进步~ 我的博客地址为:【AI 菌】的博客 我的Github项目地址是:【AI 菌】的Github 本教程会持续更新,如果对您有帮助的话... 写在前面:大家好!我是【AI 菌】,一枚爱弹吉他的程序员。我热爱AI、热爱分享、热爱开源! 这博客是我对学习的一点总结与记录。如果您也对 深度学习、机器视觉、算法、Python、C++ 感兴趣,可以关注我的动态,我们一起学习,一起进步~ 我的博客地址为:【AI 菌】的博客 我的Github项目地址是:【AI 菌】的Github 本教程会持续更新,如果对您有帮助的话...
- 卷积神经网络(CNN)在图像识别任务中的优势源于其独特的结构和设计理念,使其成为计算机视觉领域的核心技术。 一、自动特征提取能力端到端学习CNN无需人工设计特征(如SIFT、HOG),而是通过卷积核自动从原始像素中学习局部特征(如边缘、纹理),并逐层组合成高级语义特征(如物体部件或整体结构)。这种能力显著降低了特征工程的复杂度。示例:人脸识别中,浅层提取眼睛轮廓,深层... 卷积神经网络(CNN)在图像识别任务中的优势源于其独特的结构和设计理念,使其成为计算机视觉领域的核心技术。 一、自动特征提取能力端到端学习CNN无需人工设计特征(如SIFT、HOG),而是通过卷积核自动从原始像素中学习局部特征(如边缘、纹理),并逐层组合成高级语义特征(如物体部件或整体结构)。这种能力显著降低了特征工程的复杂度。示例:人脸识别中,浅层提取眼睛轮廓,深层...
- 批归一化(Batch Normalization,BN)是卷积神经网络(CNN)中的一种关键技术,由Google于2015年提出,旨在解决深度神经网络训练中的内部协变量偏移(Internal Covariate Shift) 问题,显著加速收敛并提升模型稳定性。 一、批归一化的核心机制批归一化通过标准化每一层输入的分布(均值为0、方差为1),并引入可学习参数调整数据尺度与偏移... 批归一化(Batch Normalization,BN)是卷积神经网络(CNN)中的一种关键技术,由Google于2015年提出,旨在解决深度神经网络训练中的内部协变量偏移(Internal Covariate Shift) 问题,显著加速收敛并提升模型稳定性。 一、批归一化的核心机制批归一化通过标准化每一层输入的分布(均值为0、方差为1),并引入可学习参数调整数据尺度与偏移...
- 卷积神经网络(CNN)中的“步长”(Stride)和“填充”(Padding)是两个核心超参数,直接影响特征图的空间维度、计算效率及信息保留程度。 一、步长(Stride)1. 定义与作用定义:步长是卷积核在输入数据(如图像)上滑动时的跳跃距离。核心作用:降采样:减少特征图尺寸(如步长为2时,输出尺寸减半),降低计算量和内存占用。扩大感受野:每... 卷积神经网络(CNN)中的“步长”(Stride)和“填充”(Padding)是两个核心超参数,直接影响特征图的空间维度、计算效率及信息保留程度。 一、步长(Stride)1. 定义与作用定义:步长是卷积核在输入数据(如图像)上滑动时的跳跃距离。核心作用:降采样:减少特征图尺寸(如步长为2时,输出尺寸减半),降低计算量和内存占用。扩大感受野:每...
- 在卷积神经网络(CNN)中,卷积核大小的选择将会直接影响模型的特征提取能力、计算效率和泛化性能,这些指标。⚖️ 1. 基本原则:奇数尺寸优先奇数尺寸优势:卷积核通常为奇数(如3×3、5×5),便于确定中心锚点(Anchor Point),并实现输入输出尺寸对齐(通过padding = (k-1)/2)。若使用偶数尺寸,则无法对称填充,导致特征图边缘信息处理困难。常见尺寸... 在卷积神经网络(CNN)中,卷积核大小的选择将会直接影响模型的特征提取能力、计算效率和泛化性能,这些指标。⚖️ 1. 基本原则:奇数尺寸优先奇数尺寸优势:卷积核通常为奇数(如3×3、5×5),便于确定中心锚点(Anchor Point),并实现输入输出尺寸对齐(通过padding = (k-1)/2)。若使用偶数尺寸,则无法对称填充,导致特征图边缘信息处理困难。常见尺寸...
- 1.算法运行效果图预览(完整程序运行后无水印) 2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) X = woa_idx;%设置网络参数 %卷积核Nfilter = floor(X(1));%8; %卷积核大小Sfilter = floor(X(2));%5; %丢失因子drops = X(3);%0.025... 1.算法运行效果图预览(完整程序运行后无水印) 2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) X = woa_idx;%设置网络参数 %卷积核Nfilter = floor(X(1));%8; %卷积核大小Sfilter = floor(X(2));%5; %丢失因子drops = X(3);%0.025...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
苏州工业园区“华为云杯”2025人工智能应用创新大赛赛中直播
2025/08/21 周四 16:00-17:00
Vz 华为云AIoT技术布道师
本期直播将与您一起探讨如何基于华为云IoT平台全场景云服务,结合AI、鸿蒙、大数据等技术,打造有创新性,有竞争力的方案和产品。
即将直播
热门标签