- A3C算法(Asynchronous advantage actor critic)是基于Actor-critic架构提出来的一种并行强化学习算法,解决了单个智能体与环境交互收集速度慢,训练难以收敛的问题。本案例基于单机多进程的方法实现了对ATARI游戏PONG智能体的训练。在16个并行环境下,本案例中的智能体能在14-24min训练后解决ATARI_PONG游戏。 A3C算法(Asynchronous advantage actor critic)是基于Actor-critic架构提出来的一种并行强化学习算法,解决了单个智能体与环境交互收集速度慢,训练难以收敛的问题。本案例基于单机多进程的方法实现了对ATARI游戏PONG智能体的训练。在16个并行环境下,本案例中的智能体能在14-24min训练后解决ATARI_PONG游戏。
- 本项目讲了论文节点分类任务和新冠疫苗任务,并在论文节点分类任务中对代码进行详细讲解。PGL八九系列的项目耦合性比较大,也花了挺久时间研究希望对大家有帮助。 本项目讲了论文节点分类任务和新冠疫苗任务,并在论文节点分类任务中对代码进行详细讲解。PGL八九系列的项目耦合性比较大,也花了挺久时间研究希望对大家有帮助。
- 通过以上两个版本的模型代码简单的讲解,我们可以知道他们的不同点,其实主要就是在消息传递机制的部分有所不同。ERNIESageV1版本只作用在text graph的节点上,在传递消息(Send阶段)时只考虑了邻居本身的文本信息;而ERNIESageV2版本则作用在了边上,在Send阶段同时考虑了当前节点和其邻居节点的文本信息,达到更好的交互效果。 通过以上两个版本的模型代码简单的讲解,我们可以知道他们的不同点,其实主要就是在消息传递机制的部分有所不同。ERNIESageV1版本只作用在text graph的节点上,在传递消息(Send阶段)时只考虑了邻居本身的文本信息;而ERNIESageV2版本则作用在了边上,在Send阶段同时考虑了当前节点和其邻居节点的文本信息,达到更好的交互效果。
- 本次项目讲解了图神经网络的原理并对GCN、GAT实现方式进行讲解,最后基于PGL实现了两个算法在数据集Cora、Pubmed、Citeseer的表现,在引文网络基准测试中达到了与论文同等水平的指标。 本次项目讲解了图神经网络的原理并对GCN、GAT实现方式进行讲解,最后基于PGL实现了两个算法在数据集Cora、Pubmed、Citeseer的表现,在引文网络基准测试中达到了与论文同等水平的指标。
- Panoptic Deeplab(全景分割/PyTorch)这是发表于CVPR 2020的一篇论文的复现模型,B. Cheng et al, “Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation”, CVPR 2020,此模型在原论文的基础上,使用HRNet作为b... Panoptic Deeplab(全景分割/PyTorch)这是发表于CVPR 2020的一篇论文的复现模型,B. Cheng et al, “Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation”, CVPR 2020,此模型在原论文的基础上,使用HRNet作为b...
- 通用物体检测算法 FCOS(目标检测/Pytorch)FCOS:Fully Convolutional One-Stage Object Detection本案例代码是FCOS论文复现的体验案例此模型为FCOS论文中所提出算法在ModelArts + PyTorch框架下的实现。该算法使用MS-COCO公共数据集进行训练和评估。本代码支持FCOS + ResNet-101在MS-COCO数... 通用物体检测算法 FCOS(目标检测/Pytorch)FCOS:Fully Convolutional One-Stage Object Detection本案例代码是FCOS论文复现的体验案例此模型为FCOS论文中所提出算法在ModelArts + PyTorch框架下的实现。该算法使用MS-COCO公共数据集进行训练和评估。本代码支持FCOS + ResNet-101在MS-COCO数...
- 在此教程中,我们利用PPO算法来玩“Super Mario Bros”(超级马里奥兄弟)。目前来看,对于绝大部分关卡,智能体都可以在1500个episode内学会过关,您可以在超参数栏输入您想要的游戏关卡和训练算法超参数。 在此教程中,我们利用PPO算法来玩“Super Mario Bros”(超级马里奥兄弟)。目前来看,对于绝大部分关卡,智能体都可以在1500个episode内学会过关,您可以在超参数栏输入您想要的游戏关卡和训练算法超参数。
- LunarLander是一款控制类的小游戏,也是强化学习中常用的例子。游戏任务为控制登月器着陆,玩家通过操作登月器的主引擎和副引擎,控制登月器降落。登月器平稳着陆会得到相应的奖励积分,如果精准降落在着陆平台上会有额外的奖励积分;相反地如果登月器坠毁会扣除积分。 A2C全称为Advantage Actor-Critic,在本案例中,我们将展示如何基于A2C算法,训练一个LunarLander LunarLander是一款控制类的小游戏,也是强化学习中常用的例子。游戏任务为控制登月器着陆,玩家通过操作登月器的主引擎和副引擎,控制登月器降落。登月器平稳着陆会得到相应的奖励积分,如果精准降落在着陆平台上会有额外的奖励积分;相反地如果登月器坠毁会扣除积分。 A2C全称为Advantage Actor-Critic,在本案例中,我们将展示如何基于A2C算法,训练一个LunarLander
- 现在已经覆盖了图的介绍,图的主要类型,不同的图算法,在Python中使用Networkx来实现它们,以及用于节点标记,链接预测和图嵌入的图学习技术,最后讲了GNN分类应用以及未来发展方向! 现在已经覆盖了图的介绍,图的主要类型,不同的图算法,在Python中使用Networkx来实现它们,以及用于节点标记,链接预测和图嵌入的图学习技术,最后讲了GNN分类应用以及未来发展方向!
- 3.主动学习(Active Learning)简介综述汇总以及主流技术方案 3.主动学习(Active Learning)简介综述汇总以及主流技术方案
- 2.知识蒸馏相关技术【模型蒸馏、数据蒸馏】以ERNIE-Tiny为例 2.知识蒸馏相关技术【模型蒸馏、数据蒸馏】以ERNIE-Tiny为例
- 这篇文章提出了动态记忆生成对抗网络(DM-GAN)来生成高质量的图像。该方法可以在初始图像生成不好时,引入动态存储模块来细化模糊图像内容,从而能够从文本描述中更加准确地生成图像。 文章被2019年CVPR(IEEE Conference on Computer Vision and Pattern Recognition)会议收录。 这篇文章提出了动态记忆生成对抗网络(DM-GAN)来生成高质量的图像。该方法可以在初始图像生成不好时,引入动态存储模块来细化模糊图像内容,从而能够从文本描述中更加准确地生成图像。 文章被2019年CVPR(IEEE Conference on Computer Vision and Pattern Recognition)会议收录。
- 这是一篇用GAN做文本生成图像(Text to Image、T2I)的论文,文章在2016年由Reed等人发布,被ICML会议录取。可以说是用GAN做文本生成图像的开山之作。 这是一篇用GAN做文本生成图像(Text to Image、T2I)的论文,文章在2016年由Reed等人发布,被ICML会议录取。可以说是用GAN做文本生成图像的开山之作。
- 1. 模型开发 What and WhyPyCharm在AI项目开发提供了优秀的代码编辑、调试、远程连接和同步能力,在开发者中广受欢迎。使用PyCharm插件配合ModelArts:一键帮助用户配置远程ModelArts Notebook,免去用户手工配置按需使用Notebook资源,启动停止,随心所欲本地代码提交至ModelArts训练任务,沉浸式AI开发体验ModelArts是华为云一... 1. 模型开发 What and WhyPyCharm在AI项目开发提供了优秀的代码编辑、调试、远程连接和同步能力,在开发者中广受欢迎。使用PyCharm插件配合ModelArts:一键帮助用户配置远程ModelArts Notebook,免去用户手工配置按需使用Notebook资源,启动停止,随心所欲本地代码提交至ModelArts训练任务,沉浸式AI开发体验ModelArts是华为云一...
- 基于GAN的文本生成图像,最早在2016年由Reed等人提出,最开始是Conditional GANs的扩展,仅在受限的数据集取得成果,小图像分辨率64*64。本系列是根据2021年的一篇论文《Adversarial Text-to-Image Synthesis: A Review》理解所写,主要在于总结和归纳基于GAN的“文本生成图像”(text to image)方向的研究情况 基于GAN的文本生成图像,最早在2016年由Reed等人提出,最开始是Conditional GANs的扩展,仅在受限的数据集取得成果,小图像分辨率64*64。本系列是根据2021年的一篇论文《Adversarial Text-to-Image Synthesis: A Review》理解所写,主要在于总结和归纳基于GAN的“文本生成图像”(text to image)方向的研究情况
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
即将直播 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签