- 今天我们再来看一个新的算法---决策树(Decision Tree)。 决策树呢,在机器学习的算法里也是比较常见的一种分类与回归算法了。决策树模型是树状图结构,在分类问题中,表示基于特征对实例进行分类的过程。其实从简单角度来讲就是两个选择不是“是”就是“否”。下面我们从简单的图画中看一下什么是决策树吧! 从上面这个图中我们可以看出来决策树就是这么一层一层选择... 今天我们再来看一个新的算法---决策树(Decision Tree)。 决策树呢,在机器学习的算法里也是比较常见的一种分类与回归算法了。决策树模型是树状图结构,在分类问题中,表示基于特征对实例进行分类的过程。其实从简单角度来讲就是两个选择不是“是”就是“否”。下面我们从简单的图画中看一下什么是决策树吧! 从上面这个图中我们可以看出来决策树就是这么一层一层选择...
- 搞AI,在不断精进自己代码的同时,更应该提升自己的阅读能力。需要不断地阅读大量的最新、最前沿的论文,也要深扎经典论文根基。因为阅读论文可以帮助你深入原理,理解AI更前沿的发展状态,掌握更前沿的技术热点。这也是优秀工程师和普通工程师的本质区别。 就连硅谷大佬吴恩达,都会利用碎片化的时间读AI论文,吴恩达老师不仅经常读AI论文,还给我们总结了读论文的方法。 他认为,我们... 搞AI,在不断精进自己代码的同时,更应该提升自己的阅读能力。需要不断地阅读大量的最新、最前沿的论文,也要深扎经典论文根基。因为阅读论文可以帮助你深入原理,理解AI更前沿的发展状态,掌握更前沿的技术热点。这也是优秀工程师和普通工程师的本质区别。 就连硅谷大佬吴恩达,都会利用碎片化的时间读AI论文,吴恩达老师不仅经常读AI论文,还给我们总结了读论文的方法。 他认为,我们...
- 大家好,我是不温卜火,是一名计算机学院大数据专业大二的学生,昵称来源于成语—不温不火,本意是希望自己性情温和。作为一名互联网行业的小白,博主写博客一方面是为了记录自己的学习过程,另一方面是总结自己所犯的错误希望能够帮助到很多和自己一样处于起步阶段的萌新。但由于水平有限,博客中难免会有一些错误出现,有纰漏之处恳请各位大佬不吝赐教!暂时只有csdn这一个平台,博客... 大家好,我是不温卜火,是一名计算机学院大数据专业大二的学生,昵称来源于成语—不温不火,本意是希望自己性情温和。作为一名互联网行业的小白,博主写博客一方面是为了记录自己的学习过程,另一方面是总结自己所犯的错误希望能够帮助到很多和自己一样处于起步阶段的萌新。但由于水平有限,博客中难免会有一些错误出现,有纰漏之处恳请各位大佬不吝赐教!暂时只有csdn这一个平台,博客...
- 大家好,我是不温卜火,是一名计算机学院大数据专业大二的学生,昵称来源于成语—不温不火,本意是希望自己性情温和。作为一名互联网行业的小白,博主写博客一方面是为了记录自己的学习过程,另一方面是总结自己所犯的错误希望能够帮助到很多和自己一样处于起步阶段的萌新。但由于水平有限,博客中难免会有一些错误出现,有纰漏之处恳请各位大佬不吝赐教!暂时只有csdn这一个平台,博客... 大家好,我是不温卜火,是一名计算机学院大数据专业大二的学生,昵称来源于成语—不温不火,本意是希望自己性情温和。作为一名互联网行业的小白,博主写博客一方面是为了记录自己的学习过程,另一方面是总结自己所犯的错误希望能够帮助到很多和自己一样处于起步阶段的萌新。但由于水平有限,博客中难免会有一些错误出现,有纰漏之处恳请各位大佬不吝赐教!暂时只有csdn这一个平台,博客...
- 目录 机器学习 深度学习 自然语言处理与数学 算法题和笔试题 推荐阅读 工具 最近在GitHub上淘到一个很棒的AI算法面试笔记,特地分享给小伙伴们~ GitHub地址:https://github.com/imhuay/Algorithm_Interview_Notes-Chinese 如上所示为整个项目的结构,其中从机器学习到数学主要提供的是笔记... 目录 机器学习 深度学习 自然语言处理与数学 算法题和笔试题 推荐阅读 工具 最近在GitHub上淘到一个很棒的AI算法面试笔记,特地分享给小伙伴们~ GitHub地址:https://github.com/imhuay/Algorithm_Interview_Notes-Chinese 如上所示为整个项目的结构,其中从机器学习到数学主要提供的是笔记...
- 目录 1、导入库文件 2、设计GUI 3、调用摄像头 4、实时图像处理 4.1、阈值二值化 4.2、边缘检测 4.3、轮廓检测 4.4、高斯滤波 4.5、色彩转换 4.6、调节对比度 5、退出系统 初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特... 目录 1、导入库文件 2、设计GUI 3、调用摄像头 4、实时图像处理 4.1、阈值二值化 4.2、边缘检测 4.3、轮廓检测 4.4、高斯滤波 4.5、色彩转换 4.6、调节对比度 5、退出系统 初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特...
- 从很小的时候开始,人类就能够识别最喜欢的物品,并将它们捡起来,尽管从未有人明确教过他们这样做。认知发展研究表明,与周围物体互动的能力在培养物体感知和操纵能力(例如有目的的抓取)的过程中起着至关重要的作用。通过与周围的环境互动,人类能够以自我监督的方式学习:我们知道自己作出的动作,并会从结果中学习。在机器人领域,人们正在积极研究这种自我监督学习,因为这使机器人系统能够在不需要大... 从很小的时候开始,人类就能够识别最喜欢的物品,并将它们捡起来,尽管从未有人明确教过他们这样做。认知发展研究表明,与周围物体互动的能力在培养物体感知和操纵能力(例如有目的的抓取)的过程中起着至关重要的作用。通过与周围的环境互动,人类能够以自我监督的方式学习:我们知道自己作出的动作,并会从结果中学习。在机器人领域,人们正在积极研究这种自我监督学习,因为这使机器人系统能够在不需要大...
- 目录 搭建环境 准备数据集 训练级联文件 之前使用Python+OpenCV实现交通路标识别,具体实现步骤及心得如下: OpenCV训练属于自己的xml文件,需以下几个步骤: 1、首先下载OpenCV(Windows版); 2、准备数据集,分为正样本集和负样本集; 3、生成路径,将正样本集的路径要存成 *.vec格式;负样本集的路径不做要求,*... 目录 搭建环境 准备数据集 训练级联文件 之前使用Python+OpenCV实现交通路标识别,具体实现步骤及心得如下: OpenCV训练属于自己的xml文件,需以下几个步骤: 1、首先下载OpenCV(Windows版); 2、准备数据集,分为正样本集和负样本集; 3、生成路径,将正样本集的路径要存成 *.vec格式;负样本集的路径不做要求,*...
- 近几年来,兴起了一股人工智能热潮,让人们见到了AI的能力和强大,比如图像识别,语音识别,机器翻译,无人驾驶等等。总体来说,AI的门槛还是比较高,不仅要学会使用框架实现,更重要的是,需要有一定的数学基础,如线性代数,矩阵,微积分等。 幸庆的是,国内外许多大神都已经给我们造好“轮子”,我们可以直接来使用某些模型。今天就和大家交流下如何实现一个简易版的人脸对比,非常有趣! 整体... 近几年来,兴起了一股人工智能热潮,让人们见到了AI的能力和强大,比如图像识别,语音识别,机器翻译,无人驾驶等等。总体来说,AI的门槛还是比较高,不仅要学会使用框架实现,更重要的是,需要有一定的数学基础,如线性代数,矩阵,微积分等。 幸庆的是,国内外许多大神都已经给我们造好“轮子”,我们可以直接来使用某些模型。今天就和大家交流下如何实现一个简易版的人脸对比,非常有趣! 整体...
- 目录 案例引入 本节项目 最近有小伙伴们一直在催本项目的进度,好吧,今晚熬夜加班编写,在上一节中,实现了人脸数据的采集,在本节中将对采集的人脸数据进行训练,生成识别模型。 案例引入 首先简要讲解数据集训练生成模型的原理,这里使用的是LBPH算法,在OpenCV模块中已经有内嵌的方法cv2.face.LBPHFaceRecognizer_create(),为了方便... 目录 案例引入 本节项目 最近有小伙伴们一直在催本项目的进度,好吧,今晚熬夜加班编写,在上一节中,实现了人脸数据的采集,在本节中将对采集的人脸数据进行训练,生成识别模型。 案例引入 首先简要讲解数据集训练生成模型的原理,这里使用的是LBPH算法,在OpenCV模块中已经有内嵌的方法cv2.face.LBPHFaceRecognizer_create(),为了方便...
- 目录 1、项目功能 2、项目概述 3、项目环境 之前为各位朋友分享过Python+OpenCV实现车牌检测与识别,本篇博文为各位分享Spring Boot+Maven实现车牌训练、识别系统。 1、项目功能 Spring Boot+Maven实现车牌训练、识别系统功能模块如下所示: 黄 蓝 绿 黄蓝绿车牌检测及车牌号码识别;单张图片、多张图片并发、单图片多车... 目录 1、项目功能 2、项目概述 3、项目环境 之前为各位朋友分享过Python+OpenCV实现车牌检测与识别,本篇博文为各位分享Spring Boot+Maven实现车牌训练、识别系统。 1、项目功能 Spring Boot+Maven实现车牌训练、识别系统功能模块如下所示: 黄 蓝 绿 黄蓝绿车牌检测及车牌号码识别;单张图片、多张图片并发、单图片多车...
- 摘要: 该文提出一种“网路扩展(Network Scaling)”方法,它不仅针对深度、宽度、分辨率进行调整,同时调整网络结果,作者将这种方法称之为Scaled-YOLOv4。 由此得到的YOLOv4-Large取得了SOTA结果:在MS-COCO数据集上取得了55.4%AP(73.3% AP50),推理速度为15fps@Tesla V100;在添加TTA后,该模型达... 摘要: 该文提出一种“网路扩展(Network Scaling)”方法,它不仅针对深度、宽度、分辨率进行调整,同时调整网络结果,作者将这种方法称之为Scaled-YOLOv4。 由此得到的YOLOv4-Large取得了SOTA结果:在MS-COCO数据集上取得了55.4%AP(73.3% AP50),推理速度为15fps@Tesla V100;在添加TTA后,该模型达...
- 作者:Frank摘要:主动学习小白入门第一篇1、动机如今,我们利用AI算法解决实际问题的时候,需要面临的第一个并且是最重要的一个问题就是进行大规模的数据采集和标注。众所周知,使用监督学习方法做分类任务时,往往训练样本规模越大,分类器的性能就越高。但是在面临实际问题时,我们接触到的大量的来自互联网或其他来源(如学术界或商业界)的都是未标注的数据。然而标记样本通常是代价比较大的,比... 作者:Frank摘要:主动学习小白入门第一篇1、动机如今,我们利用AI算法解决实际问题的时候,需要面临的第一个并且是最重要的一个问题就是进行大规模的数据采集和标注。众所周知,使用监督学习方法做分类任务时,往往训练样本规模越大,分类器的性能就越高。但是在面临实际问题时,我们接触到的大量的来自互联网或其他来源(如学术界或商业界)的都是未标注的数据。然而标记样本通常是代价比较大的,比...
- 目录 1. 基于阈值的目标提取 1.1 二值化处理 1.2 阈值的确定 模态法 阈值确定其他方法 大津法 2. 基于颜色的目标提取 2.1 色相、亮度、饱和度 2.2颜色分量和组合处理 比如让你提取一幅照片中的苹果,还有可能遮挡 比如让你提取绿色的麦苗,如何使用二值图像呢? 3. 基于差分目标提取 3.1 帧间差分 3.2 背景差分 1.... 目录 1. 基于阈值的目标提取 1.1 二值化处理 1.2 阈值的确定 模态法 阈值确定其他方法 大津法 2. 基于颜色的目标提取 2.1 色相、亮度、饱和度 2.2颜色分量和组合处理 比如让你提取一幅照片中的苹果,还有可能遮挡 比如让你提取绿色的麦苗,如何使用二值图像呢? 3. 基于差分目标提取 3.1 帧间差分 3.2 背景差分 1....
- 机器学习中的性能比较为什么 比较复杂? 首先,我们希望比较的是泛化 性能,然而通过实验评估获得的只是测试集上的性能,两者对比结果可能未必相同测试集上的性能与测试集本身选择有很大的关系,不同大小的测试集会得到不同的结果,即便是相同大小的测试集,若测试样例不同,测试结果也可能不同很多机器学习算法本身有一定的随机性,即便用相同的参数设置,在同一个测试集多次运行,其 结果也可能不同... 机器学习中的性能比较为什么 比较复杂? 首先,我们希望比较的是泛化 性能,然而通过实验评估获得的只是测试集上的性能,两者对比结果可能未必相同测试集上的性能与测试集本身选择有很大的关系,不同大小的测试集会得到不同的结果,即便是相同大小的测试集,若测试样例不同,测试结果也可能不同很多机器学习算法本身有一定的随机性,即便用相同的参数设置,在同一个测试集多次运行,其 结果也可能不同...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签