- https://www.jiqizhixin.com/articles/2018-07-03-14 例子: https://github.com/ShikamaruZhang/AdamW optim_adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99), weight_decay... https://www.jiqizhixin.com/articles/2018-07-03-14 例子: https://github.com/ShikamaruZhang/AdamW optim_adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99), weight_decay...
- 原文:https://mp.weixin.qq.com/s?__biz=MzIwMTE1NjQxMQ==&mid=2247485103&idx=1&sn=d3c01761e8b7684cf4179f41b1b98d09&chksm=96f374fba184fdedf98523e3d412dc66c4bacb2b016651fc3d42042d8... 原文:https://mp.weixin.qq.com/s?__biz=MzIwMTE1NjQxMQ==&mid=2247485103&idx=1&sn=d3c01761e8b7684cf4179f41b1b98d09&chksm=96f374fba184fdedf98523e3d412dc66c4bacb2b016651fc3d42042d8...
- CVPR 2018 | ETH Zurich提出利用对抗策略,解决目标检测的域适配问题 原创: Panzer 极市平台 今天 ↑ 点击蓝字关注极市平台 识别先机 创造未来 论文地址:https://arxiv.org/abs/1803.03243 摘要:本文是 ETH Zurich 发表于 CVPR 20... CVPR 2018 | ETH Zurich提出利用对抗策略,解决目标检测的域适配问题 原创: Panzer 极市平台 今天 ↑ 点击蓝字关注极市平台 识别先机 创造未来 论文地址:https://arxiv.org/abs/1803.03243 摘要:本文是 ETH Zurich 发表于 CVPR 20...
- 训练centernet 有预训练也不收敛。 有预训练: https://github.com/kuan-wang/pytorch-mobilenet-v3 ssd有预训练: https://github.com/shaoshengsong/MobileNetV3-SSD mobilenetv3 cpu45 ms ,gpu 16ms 权重只... 训练centernet 有预训练也不收敛。 有预训练: https://github.com/kuan-wang/pytorch-mobilenet-v3 ssd有预训练: https://github.com/shaoshengsong/MobileNetV3-SSD mobilenetv3 cpu45 ms ,gpu 16ms 权重只...
- EfficientNetV2: Smaller Models and Faster Training paper: https://arxiv.org/abs/2104.00298 code(官方TF代码即将开源): https://github.com/google/automl/efficientnetv2 code(大神PyTorch复现代码,刚刚... EfficientNetV2: Smaller Models and Faster Training paper: https://arxiv.org/abs/2104.00298 code(官方TF代码即将开源): https://github.com/google/automl/efficientnetv2 code(大神PyTorch复现代码,刚刚...
- KCF目标跟踪方法分析与总结 两个竖杠是什么数学符号 就是这个 ‖ ‖ 这个符号叫做范数,它事实上是由线性赋范空间到非负实数的映射 在线性赋范空间中,它可以表示空间中的点与原点间的距离,两点间的距离也是用两点之差的范数来表示的 范数所满足的条件有 (1)||x||>=0,且||x||=0当且仅当x... KCF目标跟踪方法分析与总结 两个竖杠是什么数学符号 就是这个 ‖ ‖ 这个符号叫做范数,它事实上是由线性赋范空间到非负实数的映射 在线性赋范空间中,它可以表示空间中的点与原点间的距离,两点间的距离也是用两点之差的范数来表示的 范数所满足的条件有 (1)||x||>=0,且||x||=0当且仅当x...
- Jacobian矩阵和Hessian矩阵 1. Jacobian 在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 还有, 在代数几何中, 代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群, 曲线可以嵌入其中. 它们全部都以数学家卡尔·雅可比(Carl Jacob, 1804年10月4日-18... Jacobian矩阵和Hessian矩阵 1. Jacobian 在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 还有, 在代数几何中, 代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群, 曲线可以嵌入其中. 它们全部都以数学家卡尔·雅可比(Carl Jacob, 1804年10月4日-18...
- 机器学习:多分类的logistic回归 Multi-Class Logistic(多分类的Logistic问题) 它适用于那些类别数大于2的分类问题,并且在分类结果中,样本x不是一定只属于某一个类可以得到样本x分别属于多个类的概率(也可以说样本x的估计y符合某一个几何分布),这实际上是属于Genera... 机器学习:多分类的logistic回归 Multi-Class Logistic(多分类的Logistic问题) 它适用于那些类别数大于2的分类问题,并且在分类结果中,样本x不是一定只属于某一个类可以得到样本x分别属于多个类的概率(也可以说样本x的估计y符合某一个几何分布),这实际上是属于Genera...
- C3F:首个开源人群计数算法框架 导读:52CV曾经报道多篇拥挤人群计数相关的技术,比如最近的: CVPR 2019 | 西北工业大学开源拥挤人群数据集生成工具,大幅提升算法精度 开源地址: https://github.com/gjy3035/C-3-Framework 这个有个核心网络加自己的人数计数,比如resn... C3F:首个开源人群计数算法框架 导读:52CV曾经报道多篇拥挤人群计数相关的技术,比如最近的: CVPR 2019 | 西北工业大学开源拥挤人群数据集生成工具,大幅提升算法精度 开源地址: https://github.com/gjy3035/C-3-Framework 这个有个核心网络加自己的人数计数,比如resn...
- PyTorch Dataloader 加速 参考源码: https://github.com/NVIDIA/apex/blob/f5cd5ae937f168c763985f627bbf850648ea5f3f/examples/imagenet/main_amp.py#L256 class data_prefetcher(): def __init__(... PyTorch Dataloader 加速 参考源码: https://github.com/NVIDIA/apex/blob/f5cd5ae937f168c763985f627bbf850648ea5f3f/examples/imagenet/main_amp.py#L256 class data_prefetcher(): def __init__(...
- 1pytorch的: class torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True) [source] 对小批量(mini-batch)的2d或3d输入进行批标准化(Batch Normalization)操作 在每一个小批量(mini-batch)数据中,计算输入各个维度... 1pytorch的: class torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True) [source] 对小批量(mini-batch)的2d或3d输入进行批标准化(Batch Normalization)操作 在每一个小批量(mini-batch)数据中,计算输入各个维度...
- import numpy as np import tensorflow as tf from keras import preprocessing from keras.datasets import cifar10 from keras.layers import Dense, Dropout, Activation, Flatten, Lambda, Batc... import numpy as np import tensorflow as tf from keras import preprocessing from keras.datasets import cifar10 from keras.layers import Dense, Dropout, Activation, Flatten, Lambda, Batc...
- 高斯混合模型GMM是一个非常基础并且应用很广的模型。对于它的透彻理解非常重要。网上的关于GMM的大多资料介绍都是大段公式,而且符号表述不太清楚,或者文笔非常生硬。本文尝试用通俗的语言全面介绍一下GMM,不足之处还望各位指正。 首先给出GMM的定义 这里引用李航老师《统计学习方法》上的定义,如下图: 定义很好理解,高斯混合模型是一种混合模型,混合的基本分布是高斯分布而... 高斯混合模型GMM是一个非常基础并且应用很广的模型。对于它的透彻理解非常重要。网上的关于GMM的大多资料介绍都是大段公式,而且符号表述不太清楚,或者文笔非常生硬。本文尝试用通俗的语言全面介绍一下GMM,不足之处还望各位指正。 首先给出GMM的定义 这里引用李航老师《统计学习方法》上的定义,如下图: 定义很好理解,高斯混合模型是一种混合模型,混合的基本分布是高斯分布而...
- end2end的意思在不同人看来有不同理解,但是作为程序员/深度学习炼丹娃,应当理解为:至少是从处理过的图像-->最终目标结果(比如分类结果、检测结果、分割结果等)的一个流程,也就是起码把原来的“特征提取”和“用分类器做分类,包括特征选择”的两个模块,串在一起了,而不是显示地分成两个模块。 下面是转载知乎的回答: 作者:王赟 Maigo 链接:https:/... end2end的意思在不同人看来有不同理解,但是作为程序员/深度学习炼丹娃,应当理解为:至少是从处理过的图像-->最终目标结果(比如分类结果、检测结果、分割结果等)的一个流程,也就是起码把原来的“特征提取”和“用分类器做分类,包括特征选择”的两个模块,串在一起了,而不是显示地分成两个模块。 下面是转载知乎的回答: 作者:王赟 Maigo 链接:https:/...
- 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam) 前言 (标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。 SGD 此处的SGD指mini-batch gradient descent,关于batch grad... 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam) 前言 (标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。 SGD 此处的SGD指mini-batch gradient descent,关于batch grad...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签