- #CVPR 2021##全景分割##开放集# 1、Exemplar-Based Open-Set Panoptic Segmentation Network 首尔大学&Adobe Research 先是定义开放集全景分割(OPS)任务,并通过深入分析其固有的挑战,利用合理的假设使其可行。通过重新格式化 COCO 构建一个全新的 O... #CVPR 2021##全景分割##开放集# 1、Exemplar-Based Open-Set Panoptic Segmentation Network 首尔大学&Adobe Research 先是定义开放集全景分割(OPS)任务,并通过深入分析其固有的挑战,利用合理的假设使其可行。通过重新格式化 COCO 构建一个全新的 O...
- 原文:http://www.cnblogs.com/ybjourney/p/4702562.html 机器学习(一)——K-近邻(KNN)算法 最近在看《机器学习实战》这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习。 一 . K... 原文:http://www.cnblogs.com/ybjourney/p/4702562.html 机器学习(一)——K-近邻(KNN)算法 最近在看《机器学习实战》这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习。 一 . K...
- Gaussian YOLOv3 https://github.com/jwchoi384/Gaussian_YOLOv3 预测特征图的属性 RGB3通道图像被输入到yolov3网络。 检测结果在三个不同的尺度下输出,包括目标的坐标位置、目标是正样本还是负样本、目标属于某一类置信度。 对于每个比例尺分支,在每个网格单元中预测三个结果(每个比例尺三个锚)。 结合三个尺度的结... Gaussian YOLOv3 https://github.com/jwchoi384/Gaussian_YOLOv3 预测特征图的属性 RGB3通道图像被输入到yolov3网络。 检测结果在三个不同的尺度下输出,包括目标的坐标位置、目标是正样本还是负样本、目标属于某一类置信度。 对于每个比例尺分支,在每个网格单元中预测三个结果(每个比例尺三个锚)。 结合三个尺度的结...
- 前两天为了加速一段求梯度的代码,用了SSE指令,在实验室PMH大侠的指导下,最终实现了3倍速度提升(极限是4倍,因为4个浮点数一起计算)。在这里写一下心得,欢迎拍砖。 SSE加速的几个关键是 (1) 用于并行计算的数据结构要16字节对齐 (2) 直接写汇编,不要用SSE的Load Store指令 (3) 对于SSE本身不提供的三角函数等指令,可以用查表法,但要用S... 前两天为了加速一段求梯度的代码,用了SSE指令,在实验室PMH大侠的指导下,最终实现了3倍速度提升(极限是4倍,因为4个浮点数一起计算)。在这里写一下心得,欢迎拍砖。 SSE加速的几个关键是 (1) 用于并行计算的数据结构要16字节对齐 (2) 直接写汇编,不要用SSE的Load Store指令 (3) 对于SSE本身不提供的三角函数等指令,可以用查表法,但要用S...
- 形态学可以对着二值图操作,好像也能对着灰度图操作,返回的还是灰度图。 利用morphologyEx这个函数可以方便的对图像进行一系列的膨胀腐蚀组合。 函数讲解 ●函数原型 ○c++ void morphologyEx( InputArray src, OutputArray dst, int op, InputArray kernel, Point a... 形态学可以对着二值图操作,好像也能对着灰度图操作,返回的还是灰度图。 利用morphologyEx这个函数可以方便的对图像进行一系列的膨胀腐蚀组合。 函数讲解 ●函数原型 ○c++ void morphologyEx( InputArray src, OutputArray dst, int op, InputArray kernel, Point a...
- K-means算法、高斯混合模型 简介: 本节介绍STANFORD机器学习公开课中的第12、13集视频中的算法:K-means算法、高斯混合模型(GMM)。(9、10、11集不进行介绍,略过了哈) 一、K-means算法 属于无监督学... K-means算法、高斯混合模型 简介: 本节介绍STANFORD机器学习公开课中的第12、13集视频中的算法:K-means算法、高斯混合模型(GMM)。(9、10、11集不进行介绍,略过了哈) 一、K-means算法 属于无监督学...
- tensorflow 1.0 学习:参数和特征的提取 在tf中,参与训练的参数可用 tf.trainable_variables()提取出来,如: #取出所有参与训练的参数 params=tf.trainable_variables() print("Trainable variables:-----------------------... tensorflow 1.0 学习:参数和特征的提取 在tf中,参与训练的参数可用 tf.trainable_variables()提取出来,如: #取出所有参与训练的参数 params=tf.trainable_variables() print("Trainable variables:-----------------------...
- 矩阵的秩: 用初等行变换将矩阵A化为阶梯形矩阵, 则矩阵中非零行的个数就定义为这个矩阵的秩, 记为r(A)。 满秩矩阵(non-singular matrix): 设A是n阶矩阵, 若r(A) = n, 则称A为满秩矩阵。但满秩不局限于n阶矩阵。若矩阵秩等于行数,称为行满秩;若矩阵秩等于列数,称为列满秩。既是行满秩又是列满秩则为n阶矩阵即n阶方阵。 满秩矩阵是一个很重要的... 矩阵的秩: 用初等行变换将矩阵A化为阶梯形矩阵, 则矩阵中非零行的个数就定义为这个矩阵的秩, 记为r(A)。 满秩矩阵(non-singular matrix): 设A是n阶矩阵, 若r(A) = n, 则称A为满秩矩阵。但满秩不局限于n阶矩阵。若矩阵秩等于行数,称为行满秩;若矩阵秩等于列数,称为列满秩。既是行满秩又是列满秩则为n阶矩阵即n阶方阵。 满秩矩阵是一个很重要的...
- 有监督机器学习方法可以分为生成方法和判别方法(常见的生成方法有混合高斯模型、朴素贝叶斯法和隐形马尔科夫模型等,常见的判别方法有SVM、LR等),生成方法学习出的是生成模型,判别方法学习出的是判别模型。 HMM 是生成模型,因为它对状态序列本身的分布 P(X) 和给定状态后观测值的分布 P(Y|X) 都进行了建模。 DNN 是判别模型,因为它直... 有监督机器学习方法可以分为生成方法和判别方法(常见的生成方法有混合高斯模型、朴素贝叶斯法和隐形马尔科夫模型等,常见的判别方法有SVM、LR等),生成方法学习出的是生成模型,判别方法学习出的是判别模型。 HMM 是生成模型,因为它对状态序列本身的分布 P(X) 和给定状态后观测值的分布 P(Y|X) 都进行了建模。 DNN 是判别模型,因为它直...
- 本文是加州大学默塞德分校Ming-Hsuan Yang团队在动态滤波器卷积方面的工作,已被CVPR2021接收。本文针对标准卷积存在的两个问题:内容不可知与计算量大问题,提出了一种具有内容自适应且更轻量的解耦动态滤波器,它将常规动态滤波器拆分为空域动态滤波器与通道动态滤波器,这种拆分可以极大的降低参数量,并将计算量限定在深度卷积同等水平。在图像分类、目标... 本文是加州大学默塞德分校Ming-Hsuan Yang团队在动态滤波器卷积方面的工作,已被CVPR2021接收。本文针对标准卷积存在的两个问题:内容不可知与计算量大问题,提出了一种具有内容自适应且更轻量的解耦动态滤波器,它将常规动态滤波器拆分为空域动态滤波器与通道动态滤波器,这种拆分可以极大的降低参数量,并将计算量限定在深度卷积同等水平。在图像分类、目标...
- 量化是一种加速推理的技术,量化算子并且仅仅支持前向传递。Pytorch支持int8量化,相比于float32,模型的大小减少4倍,内存要求减少4倍。与float32计算相比,对int8计算的硬件支持通常快2到4倍。 大多数情况下,模型需要以float32精度训练,然后将模型转换为int8。如今,PyTorch支持在具有AVX2支持或者更高版本的x86 CPU... 量化是一种加速推理的技术,量化算子并且仅仅支持前向传递。Pytorch支持int8量化,相比于float32,模型的大小减少4倍,内存要求减少4倍。与float32计算相比,对int8计算的硬件支持通常快2到4倍。 大多数情况下,模型需要以float32精度训练,然后将模型转换为int8。如今,PyTorch支持在具有AVX2支持或者更高版本的x86 CPU...
- 高斯混合模型GMM是一个非常基础并且应用很广的模型。对于它的透彻理解非常重要。网上的关于GMM的大多资料介绍都是大段公式,而且符号表述不太清楚,或者文笔非常生硬。本文尝试用通俗的语言全面介绍一下GMM,不足之处还望各位指正。 首先给出GMM的定义 这里引用李航老师《统计学习方法》上的定义,如下图: 定义很好理解,高斯混合模型是一种混合模型,混合的基本分布是... 高斯混合模型GMM是一个非常基础并且应用很广的模型。对于它的透彻理解非常重要。网上的关于GMM的大多资料介绍都是大段公式,而且符号表述不太清楚,或者文笔非常生硬。本文尝试用通俗的语言全面介绍一下GMM,不足之处还望各位指正。 首先给出GMM的定义 这里引用李航老师《统计学习方法》上的定义,如下图: 定义很好理解,高斯混合模型是一种混合模型,混合的基本分布是...
- 1 分类器的训练 训练级联分类器traincascade需要OpenCV中的两个exe文件,这两个文件分别是opencv_createsamples.exe和opencv_traincascade.exe文件。 训练过程可分为以下几步: (1)准备正负训练样本。 正样本: 正样本尺寸保持一致,建议自己写个小程序来剪裁图像实现尺... 1 分类器的训练 训练级联分类器traincascade需要OpenCV中的两个exe文件,这两个文件分别是opencv_createsamples.exe和opencv_traincascade.exe文件。 训练过程可分为以下几步: (1)准备正负训练样本。 正样本: 正样本尺寸保持一致,建议自己写个小程序来剪裁图像实现尺...
- 依赖项目: https://github.com/erikwijmans/Pointnet2_PyTorch 基于点云的场景理解是目前特别具有挑战性的任务,本文作者提出了一种从三维场景点云中重建高精度物体网格的学习框架RfD-Net,把重建问题转变为“先检测,再重建”。 论文已被CVPR 2021收录。 论文链接: https://arx... 依赖项目: https://github.com/erikwijmans/Pointnet2_PyTorch 基于点云的场景理解是目前特别具有挑战性的任务,本文作者提出了一种从三维场景点云中重建高精度物体网格的学习框架RfD-Net,把重建问题转变为“先检测,再重建”。 论文已被CVPR 2021收录。 论文链接: https://arx...
- 人脸识别中的rank-n 代表的意思 原创这个昵称唯一 最后发布于2017-09-02 11:05:13 阅读数 2247 收藏 展开 Rank-1 看一些论文总是在结果中看到rank-1,等等,但是就不知道什么意思,今天终于搞明白了,备注一下。 意思 rank 1, 就是第一次命中 rank k,就是在第k次以内命中 人... 人脸识别中的rank-n 代表的意思 原创这个昵称唯一 最后发布于2017-09-02 11:05:13 阅读数 2247 收藏 展开 Rank-1 看一些论文总是在结果中看到rank-1,等等,但是就不知道什么意思,今天终于搞明白了,备注一下。 意思 rank 1, 就是第一次命中 rank k,就是在第k次以内命中 人...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签