- 一、 统计学习方法概论 统计学习的定义、研究对象和方法 监督学习、无监督学习、半监督学习、强化学习 统计学习方法三要素:模型、策略、算法 模型选择:正则化、交叉验证、学习的泛化能力 生成模型和判别模型 监督学习的应用:分类问题、标注问题、回归问题 文章目录 一、 统计学习方法概论 1、 统计学习 ... 一、 统计学习方法概论 统计学习的定义、研究对象和方法 监督学习、无监督学习、半监督学习、强化学习 统计学习方法三要素:模型、策略、算法 模型选择:正则化、交叉验证、学习的泛化能力 生成模型和判别模型 监督学习的应用:分类问题、标注问题、回归问题 文章目录 一、 统计学习方法概论 1、 统计学习 ...
- Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-... Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-...
- 今天介绍2020年1月30日发表在Nature Biotechnology上的评论,作者为Relay Therapeutics公司的Walters和Murcko,该论文评价了当前几种基于AI的药物生成模型存在的问题。同时,该期刊同期发表了Insilico Medicine的CEO Alex Zhavoronkov 和多伦多大学Alán Aspuru... 今天介绍2020年1月30日发表在Nature Biotechnology上的评论,作者为Relay Therapeutics公司的Walters和Murcko,该论文评价了当前几种基于AI的药物生成模型存在的问题。同时,该期刊同期发表了Insilico Medicine的CEO Alex Zhavoronkov 和多伦多大学Alán Aspuru...
- Ensemble learning 集成学习 集成学习(Ensemble learning)是这样一个过程,按照某种算法生成多个模型,如分类器或者称为专家,再将这些模型按照某种方法组合在一起来解决某个智能计算问题。集成学习主要用来提高模型(分类,预测,函数估计等)的性能,或者用来降低模型选择不当的可能性。... Ensemble learning 集成学习 集成学习(Ensemble learning)是这样一个过程,按照某种算法生成多个模型,如分类器或者称为专家,再将这些模型按照某种方法组合在一起来解决某个智能计算问题。集成学习主要用来提高模型(分类,预测,函数估计等)的性能,或者用来降低模型选择不当的可能性。...
- 文章目录 机器学习中常见距离度量及python实现 1. 欧式距离 2. 曼哈顿距离 Manhattan Distance 3. 切比雪夫距离Chebyshev Distance 4. 闵可夫斯基距离Minkowski Distance 5. 标准化欧式距离 Standardized Euclidean distance 6. 马氏距离 ... 文章目录 机器学习中常见距离度量及python实现 1. 欧式距离 2. 曼哈顿距离 Manhattan Distance 3. 切比雪夫距离Chebyshev Distance 4. 闵可夫斯基距离Minkowski Distance 5. 标准化欧式距离 Standardized Euclidean distance 6. 马氏距离 ...
- @Author:Runsen 决策树是解决分类和回归问题的一种常见的算法。决策树算法采用树形结构,每一次选择最优特征,来实现最终的分类,因此决策树是一种递归的算法。但是,决策树很容易产生过拟合现象,最常见的处理方法进行剪枝的处理和限制决策树的深度。随机森林,是由多棵决策树集成,因此随机森林一种基于树的模型集成学习方法,下面,将详细介绍决策树和随机森林算法。 决策树 ... @Author:Runsen 决策树是解决分类和回归问题的一种常见的算法。决策树算法采用树形结构,每一次选择最优特征,来实现最终的分类,因此决策树是一种递归的算法。但是,决策树很容易产生过拟合现象,最常见的处理方法进行剪枝的处理和限制决策树的深度。随机森林,是由多棵决策树集成,因此随机森林一种基于树的模型集成学习方法,下面,将详细介绍决策树和随机森林算法。 决策树 ...
- 这是我个人的机器学习入门清单及路线,所以没有像很多收藏夹那样大而全,一来学不完,二来给自己压力。这是个人的路线。算是个人记录,也给大家参考,如有什么不足之处,欢迎指教。 前置知识及技能: 1、线性代数基础,如果没的话,还是先学了这门课在研究吧,不然会哭的。 2、学会python就行了。R也可以用用。 做了个流程图,来展示下我的学习路线。 除了入门课程外,其他四... 这是我个人的机器学习入门清单及路线,所以没有像很多收藏夹那样大而全,一来学不完,二来给自己压力。这是个人的路线。算是个人记录,也给大家参考,如有什么不足之处,欢迎指教。 前置知识及技能: 1、线性代数基础,如果没的话,还是先学了这门课在研究吧,不然会哭的。 2、学会python就行了。R也可以用用。 做了个流程图,来展示下我的学习路线。 除了入门课程外,其他四...
- 文章目录 牛顿法的推导: 收敛的充分条件 使用牛顿法求根值 牛顿迭代法运用场景 1、一维场景 牛顿法迭代法的求根案例 2、多维场景 Code 参考 牛顿法的推导: 牛顿法 ,大致的思想是用 泰勒公式 的 前几项 来代替 原来的函数 ,然后对函数进行求解和优化,,推... 文章目录 牛顿法的推导: 收敛的充分条件 使用牛顿法求根值 牛顿迭代法运用场景 1、一维场景 牛顿法迭代法的求根案例 2、多维场景 Code 参考 牛顿法的推导: 牛顿法 ,大致的思想是用 泰勒公式 的 前几项 来代替 原来的函数 ,然后对函数进行求解和优化,,推...
- @Author:Runsen 由于毕业入了CV的坑,在内卷的条件下,我只好把别人卷走。 对象检测 对象检测是一种计算机视觉技术,用于定位图像或视频中的对象实例。对象检测算法通常利用机器学习或深度学习来产生有意义的结果。当人类查看图像或视频时,我们可以在瞬间识别和定位感兴趣的对象。对象检测的目标是使用计算机复制这种智能。 比如,物体检测是高级驾驶辅助系统 (ADA... @Author:Runsen 由于毕业入了CV的坑,在内卷的条件下,我只好把别人卷走。 对象检测 对象检测是一种计算机视觉技术,用于定位图像或视频中的对象实例。对象检测算法通常利用机器学习或深度学习来产生有意义的结果。当人类查看图像或视频时,我们可以在瞬间识别和定位感兴趣的对象。对象检测的目标是使用计算机复制这种智能。 比如,物体检测是高级驾驶辅助系统 (ADA...
- @Author:Runsen 线性回归 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。 最小二乘法 最小二乘法是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。最早接触最小二乘法,应该是在高中初等数学中。要想拟合直线达到最好的效果,就是将直线和所有点都近,即与所有点的距离之和最小... @Author:Runsen 线性回归 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。 最小二乘法 最小二乘法是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。最早接触最小二乘法,应该是在高中初等数学中。要想拟合直线达到最好的效果,就是将直线和所有点都近,即与所有点的距离之和最小...
- yolov5损失函数的几点理解 所用代码:https://github.com/ultralytics/yolov5 参考文献:https://www.cnblogs.com/pprp/p/12590801.html 感谢知乎网友:Ancy贝贝 重要的代码块在build_targets内。 def build_targets(p, targets, model):&n... yolov5损失函数的几点理解 所用代码:https://github.com/ultralytics/yolov5 参考文献:https://www.cnblogs.com/pprp/p/12590801.html 感谢知乎网友:Ancy贝贝 重要的代码块在build_targets内。 def build_targets(p, targets, model):&n...
- 文章目录 假设检验的概述 假设校验的应用 假设校验的基本思想 显著性水平 假设检验的步骤 左右侧检验与双侧检验 原假设与备择建设 检验统计量计算检验的统计量 检验中常说的小概率 P值 左侧检验与右侧检验 什么时候用左侧检验什么时候用右侧检验 假设检验举例 检验结果 Z检验基本原理 总体均值检验 统计量Z... 文章目录 假设检验的概述 假设校验的应用 假设校验的基本思想 显著性水平 假设检验的步骤 左右侧检验与双侧检验 原假设与备择建设 检验统计量计算检验的统计量 检验中常说的小概率 P值 左侧检验与右侧检验 什么时候用左侧检验什么时候用右侧检验 假设检验举例 检验结果 Z检验基本原理 总体均值检验 统计量Z...
- 文章目录 决策树 基尼系数 CART 算法 预剪枝与后减枝 回归树 Code Titanic 乘客生存预测流程 模块 1:数据探索: 模块 2:数据清洗 模块 3:特征选择 模块 4:决策树模型 模块 5:模型预测 & 评估 模块 6:决策树可视化 决策树模型使用技巧总结 完整代码 决... 文章目录 决策树 基尼系数 CART 算法 预剪枝与后减枝 回归树 Code Titanic 乘客生存预测流程 模块 1:数据探索: 模块 2:数据清洗 模块 3:特征选择 模块 4:决策树模型 模块 5:模型预测 & 评估 模块 6:决策树可视化 决策树模型使用技巧总结 完整代码 决...
- @Author:Runsen 在本教程中,我们将使用 TensorFlow (Keras API) 实现一个用于多分类任务的深度学习模型,该任务需要对阿拉伯语手写字符数据集进行识别。 数据集下载地址:https://www.kaggle.com/mloey1/ahcd1 数据集介绍 该数据集由 60 名参与者书写的16,800 个字符组成,年龄范围在 19 至 ... @Author:Runsen 在本教程中,我们将使用 TensorFlow (Keras API) 实现一个用于多分类任务的深度学习模型,该任务需要对阿拉伯语手写字符数据集进行识别。 数据集下载地址:https://www.kaggle.com/mloey1/ahcd1 数据集介绍 该数据集由 60 名参与者书写的16,800 个字符组成,年龄范围在 19 至 ...
- 文章目录 原理 基本步骤 算法关键点 K值的选择 距离的选择 决策原则 距离度量的实现方法 蛮力实现 KD 树 算法优缺点 优点 缺点 sklearn用法 应用举例 源码实现 K近邻法(KNN)是一种很基本的机器学习算法,属于监督学习类算法,是一种简单易懂的方法... 文章目录 原理 基本步骤 算法关键点 K值的选择 距离的选择 决策原则 距离度量的实现方法 蛮力实现 KD 树 算法优缺点 优点 缺点 sklearn用法 应用举例 源码实现 K近邻法(KNN)是一种很基本的机器学习算法,属于监督学习类算法,是一种简单易懂的方法...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
“智能运维新视野”系列直播 —— 云监控技术深度实践
2025/08/29 周五 15:00-16:00
星璇 华为云监控产品经理
本期直播深度解析全栈监控技术实践,揭秘华为云、头部企业如何通过智能监控实现业务零中断,分享高可用系统背后的“鹰眼系统”。即刻预约,解锁数字化转型的运维密码!
回顾中
热门标签