- 文章目录 线性代数的基础操作 简单生成一个行向量 行向量的转置 (无效做法) 行向量的转置 直接生成一个列向量 (二维数组) 向量的内积 向量的外积 生成一个零矩阵 生成一个对角矩阵 生成一个单位矩阵 矩阵和矩阵相乘 利用Python求矩阵的秩 利用Python求矩阵的逆 利用Python求解线性方程 方程无解,使用投影来找到最佳近似解 ... 文章目录 线性代数的基础操作 简单生成一个行向量 行向量的转置 (无效做法) 行向量的转置 直接生成一个列向量 (二维数组) 向量的内积 向量的外积 生成一个零矩阵 生成一个对角矩阵 生成一个单位矩阵 矩阵和矩阵相乘 利用Python求矩阵的秩 利用Python求矩阵的逆 利用Python求解线性方程 方程无解,使用投影来找到最佳近似解 ...
- 数据几乎无处不在。当前存在的数字数据量正在快速增长。这个数字每两年翻一番,完全改变了我们的基本生存方式。根据IBM的一篇论文,2012年每天生成约25亿千兆字节的数据。《福布斯》的另一篇文章告诉我们,数据的增长速度比以往任何时候都要快。该文章还暗示,到2020年,每秒将为这个星球上的所有人类居民开发约17亿新信息。随着数据以更快的速度增长,出现了与处理和处理数据相关的新术... 数据几乎无处不在。当前存在的数字数据量正在快速增长。这个数字每两年翻一番,完全改变了我们的基本生存方式。根据IBM的一篇论文,2012年每天生成约25亿千兆字节的数据。《福布斯》的另一篇文章告诉我们,数据的增长速度比以往任何时候都要快。该文章还暗示,到2020年,每秒将为这个星球上的所有人类居民开发约17亿新信息。随着数据以更快的速度增长,出现了与处理和处理数据相关的新术...
- @Author:Runsen 图像识别本质上是一种计算机视觉技术,它赋予计算机“眼睛”,让计算机通过图像和视频“看”和理解世界。 在开始阅读本文之前,建议先了解一下什么是tensor、什么是torch.autograd以及如何在 PyTorch 中构建神经网络模型。 CIFAR-10 数据集 本教程使用具有 10 个类的CIFAR10 数据集:‘airplane... @Author:Runsen 图像识别本质上是一种计算机视觉技术,它赋予计算机“眼睛”,让计算机通过图像和视频“看”和理解世界。 在开始阅读本文之前,建议先了解一下什么是tensor、什么是torch.autograd以及如何在 PyTorch 中构建神经网络模型。 CIFAR-10 数据集 本教程使用具有 10 个类的CIFAR10 数据集:‘airplane...
- 随机森林与支持向量机 随机森林 目的 随机森林是一个用随机方式建立的,包含多个决策树的分类器。其随机性主要体现在两个方面:(1)训练每棵树时,从全部训练样本(样本数为N)中选取一个可能有重复的大小同样为N的数据集进行训练(即BootStrap取样);(2)在每个节点,随机选取所有特征的一个子集,用来计算最佳的分割方式。 优点 能够处理高维(即特征很多)的... 随机森林与支持向量机 随机森林 目的 随机森林是一个用随机方式建立的,包含多个决策树的分类器。其随机性主要体现在两个方面:(1)训练每棵树时,从全部训练样本(样本数为N)中选取一个可能有重复的大小同样为N的数据集进行训练(即BootStrap取样);(2)在每个节点,随机选取所有特征的一个子集,用来计算最佳的分割方式。 优点 能够处理高维(即特征很多)的...
- 文章目录 感知机 感知机代码实现 支持向量机(硬间隔) 原优化问题的对偶问题 SMO求解对偶问题最优解 软间隔支持向量机 KKT条件 w ∗ , b ∗ w^*,b^* 文章目录 感知机 感知机代码实现 支持向量机(硬间隔) 原优化问题的对偶问题 SMO求解对偶问题最优解 软间隔支持向量机 KKT条件 w ∗ , b ∗ w^*,b^*
- 文章目录 XGBoost 参考文献: 1. XGBoost原理 损失函数 正则项 树分裂(树结构)打分算法: 总结 XGBoost包的特点 2. XGBoost参数 通用参数 1、booster[默认gbtree] 2、silent[默认0] 3、nthread[默认值为最大可能的线程数] booster参数 1、et... 文章目录 XGBoost 参考文献: 1. XGBoost原理 损失函数 正则项 树分裂(树结构)打分算法: 总结 XGBoost包的特点 2. XGBoost参数 通用参数 1、booster[默认gbtree] 2、silent[默认0] 3、nthread[默认值为最大可能的线程数] booster参数 1、et...
- 一,CSV 逗号分隔值(逗号分隔值,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。字幕:纯意味着该文件的英文一个字符序列,不含必须像二进制数字那样被解读的数据。CSV文件由任意数目的记录组成,记录间以某种换行符分隔;每条记录由字段组成,字段间的分隔符是其它字符或字符串,最常见的的英文逗号或制表符。通常,所有记录都有... 一,CSV 逗号分隔值(逗号分隔值,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。字幕:纯意味着该文件的英文一个字符序列,不含必须像二进制数字那样被解读的数据。CSV文件由任意数目的记录组成,记录间以某种换行符分隔;每条记录由字段组成,字段间的分隔符是其它字符或字符串,最常见的的英文逗号或制表符。通常,所有记录都有...
- Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-... Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-...
- 研究人员已经开发出一种使用深度学习来识别与疾病相关基因的人工神经网络。该研究发表在2020年2月12日《 Nature Communications》上。 人工神经网络揭示了大量基因表达数据中的模式,并发现了与疾病相关的基因。来自瑞典林雪平大学的开发人员希望该方法最终可以应用于精准医学和个性化治疗。 科学家根据不同蛋白质或基因如何相互作用... 研究人员已经开发出一种使用深度学习来识别与疾病相关基因的人工神经网络。该研究发表在2020年2月12日《 Nature Communications》上。 人工神经网络揭示了大量基因表达数据中的模式,并发现了与疾病相关的基因。来自瑞典林雪平大学的开发人员希望该方法最终可以应用于精准医学和个性化治疗。 科学家根据不同蛋白质或基因如何相互作用...
- @Author:Runsen 目标定位 图像分类或图像识别模型只是检测图像中对象的概率。与此相反,对象定位是指识别图像中对象的位置。对象定位算法将输出对象相对于图像的位置坐标。在计算机视觉中,定位图像中对象的最流行方法是借助边界框来表示其位置。 可以使用以下参数初始化边界框: bx, by : 边界框中心的坐标bw : 边界框的宽度 wrt 图像宽度bh : ... @Author:Runsen 目标定位 图像分类或图像识别模型只是检测图像中对象的概率。与此相反,对象定位是指识别图像中对象的位置。对象定位算法将输出对象相对于图像的位置坐标。在计算机视觉中,定位图像中对象的最流行方法是借助边界框来表示其位置。 可以使用以下参数初始化边界框: bx, by : 边界框中心的坐标bw : 边界框的宽度 wrt 图像宽度bh : ...
- 文章目录 高等数学基础 函数 方向导数(引出梯度) 梯度 微积分 微积分基本理论 泰勒公式 线性代数基础 矩阵和特征 向量内积 SVD矩阵分解 高等数学基础 函数 WHAT:后面基本都是用函数,这里先理解一下函数的概念 函数的定义: y = f(x) 其中x是自变量,y是因变... 文章目录 高等数学基础 函数 方向导数(引出梯度) 梯度 微积分 微积分基本理论 泰勒公式 线性代数基础 矩阵和特征 向量内积 SVD矩阵分解 高等数学基础 函数 WHAT:后面基本都是用函数,这里先理解一下函数的概念 函数的定义: y = f(x) 其中x是自变量,y是因变...
- Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-... Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-...
- @Author:Runsen 机器模型中一般有两类参数,一类是可以从数据中学习估计得到,我们称为参数(Parameter)。还有一类参数时无法从数据中估计,只能靠人的经验进行设计指定,我们称为超参数(Hyper parameter)。超参数是在开始学习过程之前设置值的参数。相反,其他参数的值通过训练得出。 在机器学习中,怎么对超参数Hyper parameter优化... @Author:Runsen 机器模型中一般有两类参数,一类是可以从数据中学习估计得到,我们称为参数(Parameter)。还有一类参数时无法从数据中估计,只能靠人的经验进行设计指定,我们称为超参数(Hyper parameter)。超参数是在开始学习过程之前设置值的参数。相反,其他参数的值通过训练得出。 在机器学习中,怎么对超参数Hyper parameter优化...
- Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-... Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-...
- 今天给大家介绍一篇Nature Machine Intelligence期刊的论文“AmoebaContact and GDFold as a pipeline for rapid de novo protein structure prediction”,该工作由清华大学龚海鹏课题组完成。本文提出一种基于机器学习的残基Contact预测方法辅助蛋白质结构从头预测,不仅... 今天给大家介绍一篇Nature Machine Intelligence期刊的论文“AmoebaContact and GDFold as a pipeline for rapid de novo protein structure prediction”,该工作由清华大学龚海鹏课题组完成。本文提出一种基于机器学习的残基Contact预测方法辅助蛋白质结构从头预测,不仅...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
“智能运维新视野”系列直播 —— 云监控技术深度实践
2025/08/29 周五 15:00-16:00
星璇 华为云监控产品经理
本期直播深度解析全栈监控技术实践,揭秘华为云、头部企业如何通过智能监控实现业务零中断,分享高可用系统背后的“鹰眼系统”。即刻预约,解锁数字化转型的运维密码!
回顾中
热门标签