- Faster R-CNN 由 Ross Girshick 以及何凯明等人在 2016 年(2015?)应用于目标检测任务中。与传统的 RCNN 相比,它能够高效地完成目标检测,并且利用 RPN(Region Proposal Networks,区域建议网络)来选择候选框。Fast RCNN的结构如下图所示:如图,Faster R-CNN网络分为两部分,一是Region Proposal Ne... Faster R-CNN 由 Ross Girshick 以及何凯明等人在 2016 年(2015?)应用于目标检测任务中。与传统的 RCNN 相比,它能够高效地完成目标检测,并且利用 RPN(Region Proposal Networks,区域建议网络)来选择候选框。Fast RCNN的结构如下图所示:如图,Faster R-CNN网络分为两部分,一是Region Proposal Ne...
- 在数字化时代,数据海量增长,如何提取有价值信息成为关键挑战。AI技术崛起,特别是数据分类与聚类及可视化技术,正成为各行业核心力量。数据分类如邮件过滤,聚类如水果分拣。常用算法包括决策树、神经网络、SVM和K-Means等。数据可视化通过图表、热力图等形式直观展示数据,助力商业决策、科研分析等。AI技术的不断进步,将使数据分析更加智能高效。 在数字化时代,数据海量增长,如何提取有价值信息成为关键挑战。AI技术崛起,特别是数据分类与聚类及可视化技术,正成为各行业核心力量。数据分类如邮件过滤,聚类如水果分拣。常用算法包括决策树、神经网络、SVM和K-Means等。数据可视化通过图表、热力图等形式直观展示数据,助力商业决策、科研分析等。AI技术的不断进步,将使数据分析更加智能高效。
- 在此教程中,我们将对深度学习中的图模型及其原理进行一个简单的介绍,并实现一种图模型的训练和推理,至少支持三种数据集,目前支持数据集有:Cora、CiteSeer、PubMed等,并给用户提供一个详细的帮助文档。 在此教程中,我们将对深度学习中的图模型及其原理进行一个简单的介绍,并实现一种图模型的训练和推理,至少支持三种数据集,目前支持数据集有:Cora、CiteSeer、PubMed等,并给用户提供一个详细的帮助文档。
- 近年来,语音技术在人工智能领域的发展极为迅速,语音识别(ASR)和文本转语音(TTS)作为两项重要的核心技术,被广泛应用于智能助手、客户服务系统、翻译设备以及教育平台等多个领域。这两种技术各自解决了语音交互中的不同问题,共同助力于实现自然、流畅的人机对话。 什么是自动语音识别(ASR)?自动语音识别(Automatic Speech Recognition,简称 ASR)是一种将人类语音转换... 近年来,语音技术在人工智能领域的发展极为迅速,语音识别(ASR)和文本转语音(TTS)作为两项重要的核心技术,被广泛应用于智能助手、客户服务系统、翻译设备以及教育平台等多个领域。这两种技术各自解决了语音交互中的不同问题,共同助力于实现自然、流畅的人机对话。 什么是自动语音识别(ASR)?自动语音识别(Automatic Speech Recognition,简称 ASR)是一种将人类语音转换...
- 自组织特征映射人工神经元网络采用无监督学习算法,网络每个输出节点所对应的连接权重,可以认为是从样本集中学习得来的一个样本代表(或者叫聚类中心),并且输出节点按照连接权重相似相邻的规则在平面上排列。如果对每个输出节点赋以输出值,则可以用该网络来进行预测、估值或者分类。针对时间序列预测问题研制了SOM网络训练和决策算法及相应软件,为时间序列预测提供了一种新的方法与工具。 自组织特征映射人工神经元网络采用无监督学习算法,网络每个输出节点所对应的连接权重,可以认为是从样本集中学习得来的一个样本代表(或者叫聚类中心),并且输出节点按照连接权重相似相邻的规则在平面上排列。如果对每个输出节点赋以输出值,则可以用该网络来进行预测、估值或者分类。针对时间序列预测问题研制了SOM网络训练和决策算法及相应软件,为时间序列预测提供了一种新的方法与工具。
- 退化问题不解决,深度学习就无法Go Deeper。于是残差网络ResNet提出来了。要理解残差网络,就要理解残差块(Residual Block)这个结构,因为残差块是残差网络的基本组成部分。之前的各种卷积网络结构(LeNet5、AlexNet、VGG),通常结构就是卷积池化再卷积池化,中间的卷积池化操作可以有很多层。类似这样的网络结构何恺明在论文中将其称为普通网络(Plain Networ... 退化问题不解决,深度学习就无法Go Deeper。于是残差网络ResNet提出来了。要理解残差网络,就要理解残差块(Residual Block)这个结构,因为残差块是残差网络的基本组成部分。之前的各种卷积网络结构(LeNet5、AlexNet、VGG),通常结构就是卷积池化再卷积池化,中间的卷积池化操作可以有很多层。类似这样的网络结构何恺明在论文中将其称为普通网络(Plain Networ...
- 人工智能是这几年非常火的技术,上至九十九下至刚会走都对人工智能或多或少的了解。神经网络是人工智能的核心,也就是说没有神经网络就没有人工智能,那么这篇文章就带大家学习一下神经网络相关的知识。因为这篇文章没有数学公式、没有代码,旨在帮助读者快速掌握神经网络的核心知识,因此起名叫极简神经网络。零、什么神经网络概念所谓神经网络简单说就是包含多个简单且高度相连的元素的系统,每个元素都会根据输入来处理相... 人工智能是这几年非常火的技术,上至九十九下至刚会走都对人工智能或多或少的了解。神经网络是人工智能的核心,也就是说没有神经网络就没有人工智能,那么这篇文章就带大家学习一下神经网络相关的知识。因为这篇文章没有数学公式、没有代码,旨在帮助读者快速掌握神经网络的核心知识,因此起名叫极简神经网络。零、什么神经网络概念所谓神经网络简单说就是包含多个简单且高度相连的元素的系统,每个元素都会根据输入来处理相...
- 深度学习作为一个相对成熟的AI技术,在过去作为互联网红利的出口被广泛应用在工业级生产和企业的发展中,但随着数据量的指数级增加和规则型数据类型的限制,深度学习的业务场景拓展变得更加困难。于是,市场开始将目光放在了图神经网络(GNN)技术上。图神经网络能够做出更精准的预测,为每一位用户提供不同的个性化服务,实现精准化营销,这也是如今互联网企业进行二次转型的技术突破口。 图神经网络的行业应用当前的... 深度学习作为一个相对成熟的AI技术,在过去作为互联网红利的出口被广泛应用在工业级生产和企业的发展中,但随着数据量的指数级增加和规则型数据类型的限制,深度学习的业务场景拓展变得更加困难。于是,市场开始将目光放在了图神经网络(GNN)技术上。图神经网络能够做出更精准的预测,为每一位用户提供不同的个性化服务,实现精准化营销,这也是如今互联网企业进行二次转型的技术突破口。 图神经网络的行业应用当前的...
- 你吃过牛角甜甜圈吗(cronuts)? 这一被时代杂志称为“2013年25个最佳发明之一”的神奇美食,带着甜甜圈的可爱外貌与牛角面包的酥软内里,从美国纽约席卷全球。直到今天,世界各地的甜品店依然热衷于开发各种口味的cronuts,引得饕餮们纷纷自掏腰包。再看一眼圆圆胖胖的cronuts,各位擦擦口水回到正题,接下来,本文将介绍近年来引爆学术界的另一样“牛角甜甜圈”:Graph C... 你吃过牛角甜甜圈吗(cronuts)? 这一被时代杂志称为“2013年25个最佳发明之一”的神奇美食,带着甜甜圈的可爱外貌与牛角面包的酥软内里,从美国纽约席卷全球。直到今天,世界各地的甜品店依然热衷于开发各种口味的cronuts,引得饕餮们纷纷自掏腰包。再看一眼圆圆胖胖的cronuts,各位擦擦口水回到正题,接下来,本文将介绍近年来引爆学术界的另一样“牛角甜甜圈”:Graph C...
- 1. 直观感受和理解注意力模型(https://blog.csdn.net/liangyihuai/article/details/90347764)在我们视野中的物体只有少部分被我们关注到,在某一时刻我们眼睛的焦点只聚焦在某些物体上面,而不是视野中的全部物体,这是我们大脑的一个重要功能,能够使得我们有效过滤掉眼睛所获取的大量无用的视觉信息,提高我们的视觉识别能力;神经网络中的注意力模型借鉴... 1. 直观感受和理解注意力模型(https://blog.csdn.net/liangyihuai/article/details/90347764)在我们视野中的物体只有少部分被我们关注到,在某一时刻我们眼睛的焦点只聚焦在某些物体上面,而不是视野中的全部物体,这是我们大脑的一个重要功能,能够使得我们有效过滤掉眼睛所获取的大量无用的视觉信息,提高我们的视觉识别能力;神经网络中的注意力模型借鉴...
- 1 引言1.1 动机过去几年来,计算机视觉研究主要集中在卷积神经网络(常简称为 ConvNet 或 CNN)上。这些工作已经在广泛的分类和回归任务上实现了新的当前最佳表现。相对而言,尽管这些方法的历史可以追溯到多年前,但对这些系统得到出色结果的方式的理论理解还很滞后。事实上,当前计算机视觉领域的很多成果都是将 CNN 当作黑箱使用,这种做法是有效的,但其有效的原因却非常模糊不清,这严重满足不... 1 引言1.1 动机过去几年来,计算机视觉研究主要集中在卷积神经网络(常简称为 ConvNet 或 CNN)上。这些工作已经在广泛的分类和回归任务上实现了新的当前最佳表现。相对而言,尽管这些方法的历史可以追溯到多年前,但对这些系统得到出色结果的方式的理论理解还很滞后。事实上,当前计算机视觉领域的很多成果都是将 CNN 当作黑箱使用,这种做法是有效的,但其有效的原因却非常模糊不清,这严重满足不...
- 从2012年开始,卷积神经网络(Convolutional Neural Networks, CNN)极速发展,不断涌现出诸如AlexNet、VGGNet等优秀的神经网络。到了2015年,一个新型的网络更是颠覆了计算机视觉领域和深度学习领域,这就是ResNet。ResNet(Residual Neural Network)由微软研究院的何凯明等四名华人提出,其论文《Deep Residual... 从2012年开始,卷积神经网络(Convolutional Neural Networks, CNN)极速发展,不断涌现出诸如AlexNet、VGGNet等优秀的神经网络。到了2015年,一个新型的网络更是颠覆了计算机视觉领域和深度学习领域,这就是ResNet。ResNet(Residual Neural Network)由微软研究院的何凯明等四名华人提出,其论文《Deep Residual...
- 本书摘自《智能系统与技术丛书 深度学习实践:基于Caffe的解析》一文中的第1章,第1.1节,作者是薛云峰。 本书摘自《智能系统与技术丛书 深度学习实践:基于Caffe的解析》一文中的第1章,第1.1节,作者是薛云峰。
- 过去几年,越来越多的公司将AI(人工智能)作为区分其产品与竞争对手的手段。AI的使用范围从理解语音命令到识别场景到执行直接命令,从而使得必须减少客户和服务之间的摩擦。由于其受欢迎程度的普及,人工智能现在被广泛滥用为流行语,现在是时候建立一些测量这种功能的系统了。 AnTuTu以其流行的基准测试应用程序而闻名,它已经为自己提供了一个可量化的标准,供每个人判断不同平台的AI性能差异。为此目... 过去几年,越来越多的公司将AI(人工智能)作为区分其产品与竞争对手的手段。AI的使用范围从理解语音命令到识别场景到执行直接命令,从而使得必须减少客户和服务之间的摩擦。由于其受欢迎程度的普及,人工智能现在被广泛滥用为流行语,现在是时候建立一些测量这种功能的系统了。 AnTuTu以其流行的基准测试应用程序而闻名,它已经为自己提供了一个可量化的标准,供每个人判断不同平台的AI性能差异。为此目...
- 学习机器学习的理论知识难免会觉得枯燥乏味,不妨可以先快速实现一个简单的神经网络。让一部分网络先跑起来,最后掌握理论知识。 学习机器学习的理论知识难免会觉得枯燥乏味,不妨可以先快速实现一个简单的神经网络。让一部分网络先跑起来,最后掌握理论知识。
上滑加载中
推荐直播
-
基于HarmonyOS NEXT应用开发之旅
2025/07/17 周四 19:00-20:00
吴玉佩、刘俊威-华为开发者布道师-高校学生
两位学生华为开发者布道师,连续两届HarmonyOS极客马拉松获奖选手联袂呈现HarmonyOS NEXT开发全景!从基础筑基,到工具提效。为您铺就一条从入门到精通的鸿蒙应用开发之路。无论您是新手开发者,还是经验老手,都能在此收获满满干货,开启您的HarmonyOS NEXT高效、智能开发新篇章!
回顾中
热门标签