- 零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程。 零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程。
- 写在前面这篇文章同样出自沈春华组,是今年看到的最亮眼的一篇文章,只使用box标注就可完成实例分割的训练。下图是只是用box训练的实例分割结果,感觉特别惊艳。 实例分割的标注成本太高,标注一个实例的mak可能长达一分钟左右,非常影响实例分割的实际应用,而标注一个box只需要几秒钟。用box标注训练实例分割模型,可以极大的减小标注成本,加快数据迭代速度。代码AdelaiDet论文BoxInst... 写在前面这篇文章同样出自沈春华组,是今年看到的最亮眼的一篇文章,只使用box标注就可完成实例分割的训练。下图是只是用box训练的实例分割结果,感觉特别惊艳。 实例分割的标注成本太高,标注一个实例的mak可能长达一分钟左右,非常影响实例分割的实际应用,而标注一个box只需要几秒钟。用box标注训练实例分割模型,可以极大的减小标注成本,加快数据迭代速度。代码AdelaiDet论文BoxInst...
- 论文Conditional Convolutions for Instance Segmentation代码aim-uofa/AdelaiDet 写在前面论文出自沈春华团队,精品文章值得推荐。目前现有的实例分割方法主要有两类,一类是以Mask RCNN为代表的使用检测器+roi+mask head的方法,通过先检测,提取roi特征再前背景分割的方式获得实例级的分割结果, 这类方法需要分别对每... 论文Conditional Convolutions for Instance Segmentation代码aim-uofa/AdelaiDet 写在前面论文出自沈春华团队,精品文章值得推荐。目前现有的实例分割方法主要有两类,一类是以Mask RCNN为代表的使用检测器+roi+mask head的方法,通过先检测,提取roi特征再前背景分割的方式获得实例级的分割结果, 这类方法需要分别对每...
- 因为 YOLOv1-v3 的作者不再更新 YOLO 框架,所以 Alexey Bochkovskiy 接起了传承 YOLO 的重任。相比于它的前代,YOLOv4 不再是原创性且让人眼前一亮的研究,但是却集成了目标检测领域的各种实用 tricks 和即插即用模块 ,称得上是基于 YOLOv3 框架的各种目标检测 tricks 的集大成者。 本文章不会对原论文进行一一翻译,但是做了系统性的总结和关键部 因为 YOLOv1-v3 的作者不再更新 YOLO 框架,所以 Alexey Bochkovskiy 接起了传承 YOLO 的重任。相比于它的前代,YOLOv4 不再是原创性且让人眼前一亮的研究,但是却集成了目标检测领域的各种实用 tricks 和即插即用模块 ,称得上是基于 YOLOv3 框架的各种目标检测 tricks 的集大成者。 本文章不会对原论文进行一一翻译,但是做了系统性的总结和关键部
- Cascade RCNN 是作者 Zhaowei Cai 于 2018 年发表的论文,算法框架是由一系列不断增加 IoU 阈值的检测器组成,可以逐步的更接近目标的预测。 Cascade RCNN 是作者 Zhaowei Cai 于 2018 年发表的论文,算法框架是由一系列不断增加 IoU 阈值的检测器组成,可以逐步的更接近目标的预测。
- Mask RCNN 是作者 Kaiming He 于 2018 年发表的论文。Mask RCNN 继承自 Faster RCNN 主要有三个改进。 Mask RCNN 是作者 Kaiming He 于 2018 年发表的论文。Mask RCNN 继承自 Faster RCNN 主要有三个改进。
- Retinanet 提出了一种简单但是非常实用的 Focal Loss 焦点损失函数,并且 Loss 设计思想可以推广到其他领域。 Retinanet 提出了一种简单但是非常实用的 Focal Loss 焦点损失函数,并且 Loss 设计思想可以推广到其他领域。
- Retinanet 提出了一种简单但是非常实用的 Focal Loss 焦点损失函数,并且 Loss 设计思想可以推广到其他领域。 Retinanet 提出了一种简单但是非常实用的 Focal Loss 焦点损失函数,并且 Loss 设计思想可以推广到其他领域。
- 残差网络(ResNet)的提出是为了解决深度神经网络的“退化”(优化)问题。ResNet 通过设计残差块结构,调整模型结构,让更深的模型能够有效训练更训练。 残差网络(ResNet)的提出是为了解决深度神经网络的“退化”(优化)问题。ResNet 通过设计残差块结构,调整模型结构,让更深的模型能够有效训练更训练。
- 神经网络--从0开始搭建过拟合和防过拟合模型 神经网络--从0开始搭建过拟合和防过拟合模型
- 神经网络--从0开始搭建全连接网络和CNN网络 神经网络--从0开始搭建全连接网络和CNN网络
- 所谓深度神经网络的优化算法,即用来更新神经网络参数,并使损失函数最小化的算法。优化算法对于深度学习非常重要,网络参数初始化决定模型是否收敛,而优化算法的性能则直接影响模型的训练效率。 所谓深度神经网络的优化算法,即用来更新神经网络参数,并使损失函数最小化的算法。优化算法对于深度学习非常重要,网络参数初始化决定模型是否收敛,而优化算法的性能则直接影响模型的训练效率。
- 反向传播(backward propagation,简称BP)指的是计算神经网络参数梯度的方法。其原理是基于微积分中的链式规则,按相反的顺序从输出层到输入层遍历网络,依次计算每个中间变量和参数的梯度。 反向传播(backward propagation,简称BP)指的是计算神经网络参数梯度的方法。其原理是基于微积分中的链式规则,按相反的顺序从输出层到输入层遍历网络,依次计算每个中间变量和参数的梯度。
- @[toc] 摘要梳理了一些长见的名词,方便大家够好的理解论文和Ai方向的文章。 1. Backbone骨干网络或者说是主干网络,指的是提取特征的网络,其作用就是提取图片中的信息,共后面的网络使用。这些网络经常使用的是resnet VGG等,而不是我们自己设计的网络,因为这些网络已经证明了在分类等问题上的特征提取能力是很强的。在用这些网络作为backbone的时候,都是直接加载官方已经训练好... @[toc] 摘要梳理了一些长见的名词,方便大家够好的理解论文和Ai方向的文章。 1. Backbone骨干网络或者说是主干网络,指的是提取特征的网络,其作用就是提取图片中的信息,共后面的网络使用。这些网络经常使用的是resnet VGG等,而不是我们自己设计的网络,因为这些网络已经证明了在分类等问题上的特征提取能力是很强的。在用这些网络作为backbone的时候,都是直接加载官方已经训练好...
- 原文链接这个问题是国际航空乘客预测问题, 数据是1949年1月到1960年12月国际航空公司每个月的乘客数量(单位:千人),共有12年144个月的数据。网盘链接:https://pan.baidu.com/s/1JJTe2CL0BxpmyewKCsvc0w提取码:6666数据趋势:训练程序:import numpy as np import pandas as pd import matpl... 原文链接这个问题是国际航空乘客预测问题, 数据是1949年1月到1960年12月国际航空公司每个月的乘客数量(单位:千人),共有12年144个月的数据。网盘链接:https://pan.baidu.com/s/1JJTe2CL0BxpmyewKCsvc0w提取码:6666数据趋势:训练程序:import numpy as np import pandas as pd import matpl...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签