- 1.model size 就是模型的大小,我们一般使用参数量parameter来衡量,注意,它的单位是个。但是由于很多模型参数量太大,所以一般取一个更方便的单位:兆(M) 来衡量。比如ResNet-152的参数量可以达到60 million = 0.0006M。有些时候,model size在实际计算时除了包含参数量以外,还包括网络架构信息和优化器... 1.model size 就是模型的大小,我们一般使用参数量parameter来衡量,注意,它的单位是个。但是由于很多模型参数量太大,所以一般取一个更方便的单位:兆(M) 来衡量。比如ResNet-152的参数量可以达到60 million = 0.0006M。有些时候,model size在实际计算时除了包含参数量以外,还包括网络架构信息和优化器...
- 网络裁剪加速 Learning Efficient Convolutional Networks through Network Slimming ICCV2017 https://github.com/liuzhuang13/slimming CNN网络通道裁剪加速 Channel Pruning for Accelerating ... 网络裁剪加速 Learning Efficient Convolutional Networks through Network Slimming ICCV2017 https://github.com/liuzhuang13/slimming CNN网络通道裁剪加速 Channel Pruning for Accelerating ...
- 思想 一般化的跟踪问题可以分解成如下几步: 1. 在帧中,在当前位置附近采样,训练一个回归器。这个回归器能计算一个小窗口采样的响应。 2. 在帧中,在前一帧位置附近采样,用前述回归器判断每个采样的响应。 3. 响应最强的采样作为本帧位置。 循环矩阵表示图像块 在图像中,循环位移操作可以用来近似采样窗口的位移。 训练时,围绕着当前位置进行的一系列位移采样可以用二维... 思想 一般化的跟踪问题可以分解成如下几步: 1. 在帧中,在当前位置附近采样,训练一个回归器。这个回归器能计算一个小窗口采样的响应。 2. 在帧中,在前一帧位置附近采样,用前述回归器判断每个采样的响应。 3. 响应最强的采样作为本帧位置。 循环矩阵表示图像块 在图像中,循环位移操作可以用来近似采样窗口的位移。 训练时,围绕着当前位置进行的一系列位移采样可以用二维...
- groups是输入和输出的公约数 input = torch.Tensor(1, 48, 112, 112) conv_23=Conv_block(48, 32, groups=16, kernel=3, padding=1, stride=1) # conv_23 = Depth_Wise(64, 32, kernel=(3, 3), stride=(... groups是输入和输出的公约数 input = torch.Tensor(1, 48, 112, 112) conv_23=Conv_block(48, 32, groups=16, kernel=3, padding=1, stride=1) # conv_23 = Depth_Wise(64, 32, kernel=(3, 3), stride=(...
- 1.卷积参数量的计算,若卷积层的输入featuremap的维度为Cin×Hin×Win,卷积核的大小为K1×K2, padding=P1×P2, stride=S1×S2,卷积核(filter)的数量为Cout,则输出特征图的大小为Cout×Hout×Wout,其中: Hout=⌊(H−K1+2P1)/S1⌋+1 Wout=⌊(W−K2+2P2)/S2... 1.卷积参数量的计算,若卷积层的输入featuremap的维度为Cin×Hin×Win,卷积核的大小为K1×K2, padding=P1×P2, stride=S1×S2,卷积核(filter)的数量为Cout,则输出特征图的大小为Cout×Hout×Wout,其中: Hout=⌊(H−K1+2P1)/S1⌋+1 Wout=⌊(W−K2+2P2)/S2...
- 原文:https://zhuanlan.zhihu.com/p/42924585 AutoML和神经架构搜索(NAS),是深度学习领域的新一代王者。 这些方法能快糙猛地搞定机器学习任务,简单有效,高度符合当代科技公司核心价值观。 它们背后原理如何,怎样使用? 技术博客TowardDataScience有一篇文章,就全面介绍了关于AutoML和NAS你需... 原文:https://zhuanlan.zhihu.com/p/42924585 AutoML和神经架构搜索(NAS),是深度学习领域的新一代王者。 这些方法能快糙猛地搞定机器学习任务,简单有效,高度符合当代科技公司核心价值观。 它们背后原理如何,怎样使用? 技术博客TowardDataScience有一篇文章,就全面介绍了关于AutoML和NAS你需...
- https://github.com/jac578/merge_bn_mxnet/blob/master/merge_bn_mxnet.py import osimport os.path as ospimport mxnet as mximport jsonimport sysimport numpy as npimport copy import fr... https://github.com/jac578/merge_bn_mxnet/blob/master/merge_bn_mxnet.py import osimport os.path as ospimport mxnet as mximport jsonimport sysimport numpy as npimport copy import fr...
- 0 系列文章目录 0.1 基于协同过滤算法的电影推荐系统设计(一) - 项目简介 0.2 基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍 ALS是alternating least squares的缩写 , 意为交替最小二乘法,而ALS-WR是alternating-least-squares with weighted-λ -regularizati... 0 系列文章目录 0.1 基于协同过滤算法的电影推荐系统设计(一) - 项目简介 0.2 基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍 ALS是alternating least squares的缩写 , 意为交替最小二乘法,而ALS-WR是alternating-least-squares with weighted-λ -regularizati...
- DL之RNN:基于RNN实现模仿贴吧留言 目录 输出结果 代码设计 输出结果 更新…… 代码设计 注:CPU上跑的较慢,建议GPU运行代码 DL之RNN:基于RNN实现模仿贴吧留言 目录 输出结果 代码设计 输出结果 更新…… 代码设计 注:CPU上跑的较慢,建议GPU运行代码
- YOLOv3:深度学习之计算机视觉神经网络Yolov3-5clessses训练自己的数据集全程记录(第二次) 目录 训练记录 训练记录 YOLOv3:深度学习之计算机视觉神经网络Yolov3-5clessses训练自己的数据集全程记录(第二次) 目录 训练记录 训练记录
- 本文介绍下 RNN 及几种变种的结构和对应的 TensorFlow 源码实现,另外通过简单的实例来实现 TensorFlow RNN 相关类的调用。 RNN RNN,循环神经网络,Recurrent Neural Networks。人们思考问题往往不是从零开始的,比如阅读时我们对每个词的理解都会依赖于前面看到的一些信息,而不是把前面看的内容全部抛弃再去理解某处的信息。应用... 本文介绍下 RNN 及几种变种的结构和对应的 TensorFlow 源码实现,另外通过简单的实例来实现 TensorFlow RNN 相关类的调用。 RNN RNN,循环神经网络,Recurrent Neural Networks。人们思考问题往往不是从零开始的,比如阅读时我们对每个词的理解都会依赖于前面看到的一些信息,而不是把前面看的内容全部抛弃再去理解某处的信息。应用...
- 前言 风格迁移,基于A图像内容,参考B图像的风格(名画,像毕加索或梵高一样绘画),创造出一幅新图像。 本文基于TF-Hub开源项目进行开发,60多行代码快速实现神经网络的风格迁移,为方便大家使用,已经整理相关代码和模型到Github中,直接下载即可使用。 一、模型效果 Style_transfer_V2版本 二、原理 风格迁移是... 前言 风格迁移,基于A图像内容,参考B图像的风格(名画,像毕加索或梵高一样绘画),创造出一幅新图像。 本文基于TF-Hub开源项目进行开发,60多行代码快速实现神经网络的风格迁移,为方便大家使用,已经整理相关代码和模型到Github中,直接下载即可使用。 一、模型效果 Style_transfer_V2版本 二、原理 风格迁移是...
- 近年来,可解释机器学习(IML) 的相关研究蓬勃发展。尽管这个领域才刚刚起步,但是它在回归建模和基于规则的机器学习方面的相关工作却始于20世纪60年代。最近,arXiv上的一篇论文简要介绍了解释机器学习(IML)领域的历史,给出了最先进的可解释方法的概述,并讨论了遇到的挑战。 当机器学习模型用在产品、决策或者研究过程中的时候,“可解释性”通常是一个决定因素。... 近年来,可解释机器学习(IML) 的相关研究蓬勃发展。尽管这个领域才刚刚起步,但是它在回归建模和基于规则的机器学习方面的相关工作却始于20世纪60年代。最近,arXiv上的一篇论文简要介绍了解释机器学习(IML)领域的历史,给出了最先进的可解释方法的概述,并讨论了遇到的挑战。 当机器学习模型用在产品、决策或者研究过程中的时候,“可解释性”通常是一个决定因素。...
- 前言 本文综合整理常用的神经网络,包括生物神经网络、人工神经网络、卷积神经网络、循环神经网络、生成对抗网络;参考了许多高校的课程、论文、博客和视频等。文章的结构是先进行概念了解,然后结合图片、结构图、一步一步详细讲解;大家要不看看? ( •̀ ω •́ )y 一、人工神经网络 简介:人工神经网络 (Artificial Neural Network, ANN),由... 前言 本文综合整理常用的神经网络,包括生物神经网络、人工神经网络、卷积神经网络、循环神经网络、生成对抗网络;参考了许多高校的课程、论文、博客和视频等。文章的结构是先进行概念了解,然后结合图片、结构图、一步一步详细讲解;大家要不看看? ( •̀ ω •́ )y 一、人工神经网络 简介:人工神经网络 (Artificial Neural Network, ANN),由...
- KNN决策树探究泰坦尼克号幸存者问题 import pandas as pd from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn.metrics import classification_report import graphviz #决策树可视... KNN决策树探究泰坦尼克号幸存者问题 import pandas as pd from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn.metrics import classification_report import graphviz #决策树可视...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签