- 编者按:Google 产品经理 Yariv Adan 讨论了困惑很多人的问题:人工神经网络和人类大脑中的神经网络到底有多像?人工神经网络和机器学习已经成为大众媒体的热门主题。智能机器这一想法勾起了很多人的想象,而且人们特别喜欢把它和人类放一起比较。特别是有一个关于人工智能的底层机制的基础问题经常出现——这些人工神经网络的工作方式真的和我们大脑中的神经元相似吗?TI;Dr不。尽管从高层概念上说... 编者按:Google 产品经理 Yariv Adan 讨论了困惑很多人的问题:人工神经网络和人类大脑中的神经网络到底有多像?人工神经网络和机器学习已经成为大众媒体的热门主题。智能机器这一想法勾起了很多人的想象,而且人们特别喜欢把它和人类放一起比较。特别是有一个关于人工智能的底层机制的基础问题经常出现——这些人工神经网络的工作方式真的和我们大脑中的神经元相似吗?TI;Dr不。尽管从高层概念上说...
- 一个关于计算机如何学习的新理论的蓝图正在形成,其影响甚至比登月更大!研究人员正试图解释神经网络工作原理,并保证如果以规定的方式构建一个神经网络,它就能够执行特定的任务。深度学习需要更多的理论!这是学术界的一个共识。神经网络十分强大,但往往不可预测。现在,谷歌大脑、FAIR、德州农工大学等的数学家们试图深究神经网络的理论基础,开始揭示神经网络的形式如何影响其功能。我们对神经网络几乎一无所知设计... 一个关于计算机如何学习的新理论的蓝图正在形成,其影响甚至比登月更大!研究人员正试图解释神经网络工作原理,并保证如果以规定的方式构建一个神经网络,它就能够执行特定的任务。深度学习需要更多的理论!这是学术界的一个共识。神经网络十分强大,但往往不可预测。现在,谷歌大脑、FAIR、德州农工大学等的数学家们试图深究神经网络的理论基础,开始揭示神经网络的形式如何影响其功能。我们对神经网络几乎一无所知设计...
- 编译:啤酒泡泡、曹培信来源:大数据文摘(ID:BigDataDigest)原文:MakeArtWithPython对于上了床就再也不想下来的人来说,关灯成为睡觉前面临的最大挑战!然而,一个来自意大利拉不勒斯的小哥哥,决定利用“舞步”(身体姿势)来控制自己家的灯,整个过程利用一个神经网络实现。此前,关于关灯这件事,这一届网友永远不会让人失望,他们开发出了各种关灯***:当然少不了憨豆先生最简单粗... 编译:啤酒泡泡、曹培信来源:大数据文摘(ID:BigDataDigest)原文:MakeArtWithPython对于上了床就再也不想下来的人来说,关灯成为睡觉前面临的最大挑战!然而,一个来自意大利拉不勒斯的小哥哥,决定利用“舞步”(身体姿势)来控制自己家的灯,整个过程利用一个神经网络实现。此前,关于关灯这件事,这一届网友永远不会让人失望,他们开发出了各种关灯***:当然少不了憨豆先生最简单粗...
- 目标检测 (Object detection) 是一种计算机视觉技术,旨在检测汽车、建筑物和人类等目标。这些目标通常可以通过图像或视频来识别。目标检测在视频监控、自动驾驶汽车、人体跟踪等领域得到了广泛的应用。在本文中,我们将了解目标检测的基础知识,并回顾一些最常用的算法和一些全新的方法。转载来源公众号:磐创AI来源:Medium“ 阅读本文大概需要 11 分钟。 ”目标检测的原理目标检测定位... 目标检测 (Object detection) 是一种计算机视觉技术,旨在检测汽车、建筑物和人类等目标。这些目标通常可以通过图像或视频来识别。目标检测在视频监控、自动驾驶汽车、人体跟踪等领域得到了广泛的应用。在本文中,我们将了解目标检测的基础知识,并回顾一些最常用的算法和一些全新的方法。转载来源公众号:磐创AI来源:Medium“ 阅读本文大概需要 11 分钟。 ”目标检测的原理目标检测定位...
- 过拟合及其对策阅读目录1 损失函数2 学习3 过拟合与欠拟合4 方差与偏差5 如何避免过拟合5.1 正则化5.2 剪枝5.3 数据增广5.4 dropout5.5 Early Stopping5.6 集成学习6 参考文献本文介绍了欠拟合、过拟合相关概念,分析造成它们的原因,总结了防止过拟合的一般策略。回到顶部1 损失函数损失函数(loss function):是用来度量模型预测值f(x)与样... 过拟合及其对策阅读目录1 损失函数2 学习3 过拟合与欠拟合4 方差与偏差5 如何避免过拟合5.1 正则化5.2 剪枝5.3 数据增广5.4 dropout5.5 Early Stopping5.6 集成学习6 参考文献本文介绍了欠拟合、过拟合相关概念,分析造成它们的原因,总结了防止过拟合的一般策略。回到顶部1 损失函数损失函数(loss function):是用来度量模型预测值f(x)与样...
- TensorFlow.js简介TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是一个将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。目前被广泛的运用在语音识别... TensorFlow.js简介TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是一个将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。目前被广泛的运用在语音识别...
- 开篇之前先回顾两个基本模型的概念,end2end,sqe2sqe和注意力机制模型介绍点到点(end2end)模型通过输入直接决定输出,中间部分不能或很少能进行解释,通过缩减人工预处理和后续处理,尽可能使模型从原始输入到最终输出,给模型更多的可以根据数据自动调节的空间,增加模型的整体契合度。end2end强调的是全局最优,中间部分局部最优并不能代表整体最优。端到端(squence2... 开篇之前先回顾两个基本模型的概念,end2end,sqe2sqe和注意力机制模型介绍点到点(end2end)模型通过输入直接决定输出,中间部分不能或很少能进行解释,通过缩减人工预处理和后续处理,尽可能使模型从原始输入到最终输出,给模型更多的可以根据数据自动调节的空间,增加模型的整体契合度。end2end强调的是全局最优,中间部分局部最优并不能代表整体最优。端到端(squence2...
- 人工神经网络表示一类机器学习的模型,最初是受到了哺乳动物中央神经系统研究的启发。网络由相互连接的分层组织的神经元组成,这些神经元在达到一定条件时就会互相交换信息(专业术语是激发(fire))。最初的研究开始于20世纪50年代后期,当时引入了感知机(Perceptron)模型(更多信息请参考文章《The Perceptron: A Probabilistic Model for Informa... 人工神经网络表示一类机器学习的模型,最初是受到了哺乳动物中央神经系统研究的启发。网络由相互连接的分层组织的神经元组成,这些神经元在达到一定条件时就会互相交换信息(专业术语是激发(fire))。最初的研究开始于20世纪50年代后期,当时引入了感知机(Perceptron)模型(更多信息请参考文章《The Perceptron: A Probabilistic Model for Informa...
- 机器学习日益广为人知,越来越多的计算机科学家和工程师投身其中。不幸的是,理论、算法、应用、论文、书籍、视频等信息如此之多,很容易让初学者迷失其中,不清楚如何才能提升技能。本文作者依据自身经验给出了一套快速上手的可行方法及学习资源的分类汇总,机器之心在其基础上做了增益,希望对读者有所帮助。 机器学习日益广为人知,越来越多的计算机科学家和工程师投身其中。不幸的是,理论、算法、应用、论文、书籍、视频等信息如此之多,很容易让初学者迷失其中,不清楚如何才能提升技能。本文作者依据自身经验给出了一套快速上手的可行方法及学习资源的分类汇总,机器之心在其基础上做了增益,希望对读者有所帮助。
- 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.7.5节,作者是李玉鑑、张婷、单传辉、刘兆英等。 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.7.5节,作者是李玉鑑、张婷、单传辉、刘兆英等。
- 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.7.4节,作者是李玉鑑、张婷、单传辉、刘兆英等。 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.7.4节,作者是李玉鑑、张婷、单传辉、刘兆英等。
- 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.7.3节,作者是李玉鑑、张婷、单传辉、刘兆英等。 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.7.3节,作者是李玉鑑、张婷、单传辉、刘兆英等。
- 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.7.2节,作者是李玉鑑、张婷、单传辉、刘兆英等。 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.7.2节,作者是李玉鑑、张婷、单传辉、刘兆英等。
- 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.7.1节,作者是李玉鑑、张婷、单传辉、刘兆英等。 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.7.1节,作者是李玉鑑、张婷、单传辉、刘兆英等。
- 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.6.2节,作者是李玉鑑、张婷、单传辉、刘兆英等。 本书摘自《深度学习:卷积神经网络从入门到精通》——书中第3章,第3.6.2节,作者是李玉鑑、张婷、单传辉、刘兆英等。
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签