- 前言 本文综合整理常用的神经网络,包括生物神经网络、人工神经网络、卷积神经网络、循环神经网络、生成对抗网络;参考了许多高校的课程、论文、博客和视频等。文章的结构是先进行概念了解,然后结合图片、结构图、一步一步详细讲解;大家要不看看? ( •̀ ω •́ )y 一、人工神经网络 简介:人工神经网络 (Artificial Neural ... 前言 本文综合整理常用的神经网络,包括生物神经网络、人工神经网络、卷积神经网络、循环神经网络、生成对抗网络;参考了许多高校的课程、论文、博客和视频等。文章的结构是先进行概念了解,然后结合图片、结构图、一步一步详细讲解;大家要不看看? ( •̀ ω •́ )y 一、人工神经网络 简介:人工神经网络 (Artificial Neural ...
- 一、概念了解 前言 卷积神经网络(Convolutional Neural Network, CNN),对于图像处理有出色表现,在计算机视觉中得到了广泛的应用。 卷积神经网络通过卷积层与池化层的叠加实现对输入数据的特征提取,最后连接全连接层实现分类。 基于什么提出卷积神经网络? 动物视觉系统对外界的感知是: 视觉皮层的每个神经元只响应某些特定区域的刺激(感受... 一、概念了解 前言 卷积神经网络(Convolutional Neural Network, CNN),对于图像处理有出色表现,在计算机视觉中得到了广泛的应用。 卷积神经网络通过卷积层与池化层的叠加实现对输入数据的特征提取,最后连接全连接层实现分类。 基于什么提出卷积神经网络? 动物视觉系统对外界的感知是: 视觉皮层的每个神经元只响应某些特定区域的刺激(感受...
- 题图 | Designed by Freepik 让我们从一道选择题开始今天的话题。 什么是神经网络?请选择以下描述正确的一项或多项。 A. 神经网络是一种数学函数,它接收输入并产生输出。B. 神经网络是一种计算图,多维数组流经其中。C. 神经网络由层组成,每层都具有「神经元」。D. 神经网络是一种通用函数逼近器。 你的答案是________。 正确答案是... 题图 | Designed by Freepik 让我们从一道选择题开始今天的话题。 什么是神经网络?请选择以下描述正确的一项或多项。 A. 神经网络是一种数学函数,它接收输入并产生输出。B. 神经网络是一种计算图,多维数组流经其中。C. 神经网络由层组成,每层都具有「神经元」。D. 神经网络是一种通用函数逼近器。 你的答案是________。 正确答案是...
- DL之RNN/LSTM/GRU:RNN/LSTM/GRU算法动图对比、TF代码定义之详细攻略 目录 RNN、LSTM、GRU算法对比 1、RNN/LSTM/GRU对比 2、RNN/LSTM/GRU动图对比 TF代码定义 DL之RNN/LSTM/GRU:RNN/LSTM/GRU算法动图对比、TF代码定义之详细攻略 目录 RNN、LSTM、GRU算法对比 1、RNN/LSTM/GRU对比 2、RNN/LSTM/GRU动图对比 TF代码定义
- Keras之ML~P:基于Keras中建立的回归预测的神经网络模型(根据200个数据样本预测新的5+1个样本)——回归预测 目录 输出结果 核心代码 输出结果 核心代码 # -*- coding: utf-8 -*-... Keras之ML~P:基于Keras中建立的回归预测的神经网络模型(根据200个数据样本预测新的5+1个样本)——回归预测 目录 输出结果 核心代码 输出结果 核心代码 # -*- coding: utf-8 -*-...
- DL之RNN:基于TF利用RNN实现简单的序列数据类型(DIY序列数据集)的二分类(线性序列&随机序列) 目录 序列数据类型&输出结果 设计思路 序列数据类型&输出结果 1、test01:training_iters = 1000000 (32, 20, 1) [[0.336], [0.337], [0.338], [0.339], [0... DL之RNN:基于TF利用RNN实现简单的序列数据类型(DIY序列数据集)的二分类(线性序列&随机序列) 目录 序列数据类型&输出结果 设计思路 序列数据类型&输出结果 1、test01:training_iters = 1000000 (32, 20, 1) [[0.336], [0.337], [0.338], [0.339], [0...
- TF之AutoML框架:AutoML框架的简介、特点、使用方法详细攻略 目录 AutoML框架的简介 AutoML框架的特点 AutoML框架的使用方法 AutoML VS AutoKeras 框架 AutoML框架的简介 AutoML官网:https://www.automl.org/ 自动化机器学习,简单来说就是一种自动化任... TF之AutoML框架:AutoML框架的简介、特点、使用方法详细攻略 目录 AutoML框架的简介 AutoML框架的特点 AutoML框架的使用方法 AutoML VS AutoKeras 框架 AutoML框架的简介 AutoML官网:https://www.automl.org/ 自动化机器学习,简单来说就是一种自动化任...
- ML之NN:利用神经网络的BP算法解决XOR类(异或非)问题(BP solve XOR Problem) 目录 输出结果 实现代码 输出结果 实现代码 #BP solve XOR Problemimport numpy as np X = np.array ([[1, 0, 0], [1, 0, 1], [1, ... ML之NN:利用神经网络的BP算法解决XOR类(异或非)问题(BP solve XOR Problem) 目录 输出结果 实现代码 输出结果 实现代码 #BP solve XOR Problemimport numpy as np X = np.array ([[1, 0, 0], [1, 0, 1], [1, ...
- DL之FCN:FCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 FCN算法的简介(论文介绍) 0、FCN性能—实验结果 1、全卷积神经网络的特点、局限性、缺点 FCN算法的架构详解 FCN算法的案例应用 相关... DL之FCN:FCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 FCN算法的简介(论文介绍) 0、FCN性能—实验结果 1、全卷积神经网络的特点、局限性、缺点 FCN算法的架构详解 FCN算法的案例应用 相关...
- Keras之ML~P:基于Keras中建立的简单的二分类问题的神经网络模型(根据200个数据样本预测新的5个样本)——概率预测 目录 输出结果 核心代码 输出结果 核心代码 # -*- coding: utf-8 -*- #Keras之ML~P:基于Keras中建立的简单的二分类问题的神经网络模型(根据200个... Keras之ML~P:基于Keras中建立的简单的二分类问题的神经网络模型(根据200个数据样本预测新的5个样本)——概率预测 目录 输出结果 核心代码 输出结果 核心代码 # -*- coding: utf-8 -*- #Keras之ML~P:基于Keras中建立的简单的二分类问题的神经网络模型(根据200个...
- DL之CNN:计算机视觉之卷积神经网络经典算法简介、重要进展、改进技巧之详细攻略(建议收藏) 目录 CNN经典算法细讲 1、CNN历年冠军算法 1.1、LeNet-5 1.2、AlexNet 1.3、VGGNet DL之CNN:计算机视觉之卷积神经网络经典算法简介、重要进展、改进技巧之详细攻略(建议收藏) 目录 CNN经典算法细讲 1、CNN历年冠军算法 1.1、LeNet-5 1.2、AlexNet 1.3、VGGNet
- DL之DNN:基于神经网络(从1层~50层)DNN算法实现对非线性数据集点进行绘制决策边界 目录 输出结果 设计代码 输出结果 设计代码 首先查看数据集 import numpy as npfrom sklearn.datasets impo... DL之DNN:基于神经网络(从1层~50层)DNN算法实现对非线性数据集点进行绘制决策边界 目录 输出结果 设计代码 输出结果 设计代码 首先查看数据集 import numpy as npfrom sklearn.datasets impo...
- DL之DNN:利用numpy自定义三层结构+softmax函数建立3层完整神经网络全部代码实现(探究BP神经网络的底层思想) 目录 输出结果 代码实现 输出结果 代码实现 #DL之NN:利用numpy自定义三... DL之DNN:利用numpy自定义三层结构+softmax函数建立3层完整神经网络全部代码实现(探究BP神经网络的底层思想) 目录 输出结果 代码实现 输出结果 代码实现 #DL之NN:利用numpy自定义三...
- DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理 目录 BP类神经网络理解 1、信号正向传播FP 2、误差反向传播BP+GD BP类神经网络理解 1、BP算法 1、信号正向传播FP ... DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理 目录 BP类神经网络理解 1、信号正向传播FP 2、误差反向传播BP+GD BP类神经网络理解 1、BP算法 1、信号正向传播FP ...
- DL之SqueezeNet:SqueezeNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 SqueezeNet算法的简介(论文介绍) 1、轻量级的CNN架构优势 2、主要特点 3、常用的模型压缩技术 SqueezeNet算法的架构详解 SqueezeNet算法的案例应用 ... DL之SqueezeNet:SqueezeNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 SqueezeNet算法的简介(论文介绍) 1、轻量级的CNN架构优势 2、主要特点 3、常用的模型压缩技术 SqueezeNet算法的架构详解 SqueezeNet算法的案例应用 ...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签