- Keras之ML~P:基于Keras中建立的回归预测的神经网络模型(根据200个数据样本预测新的5+1个样本)——回归预测 目录 输出结果 核心代码 输出结果 核心代码 # -*- coding: utf-8 -*-... Keras之ML~P:基于Keras中建立的回归预测的神经网络模型(根据200个数据样本预测新的5+1个样本)——回归预测 目录 输出结果 核心代码 输出结果 核心代码 # -*- coding: utf-8 -*-...
- DL之RNN:基于TF利用RNN实现简单的序列数据类型(DIY序列数据集)的二分类(线性序列&随机序列) 目录 序列数据类型&输出结果 设计思路 序列数据类型&输出结果 1、test01:training_iters = 1000000 (32, 20, 1) [[0.336], [0.337], [0.338], [0.339], [0... DL之RNN:基于TF利用RNN实现简单的序列数据类型(DIY序列数据集)的二分类(线性序列&随机序列) 目录 序列数据类型&输出结果 设计思路 序列数据类型&输出结果 1、test01:training_iters = 1000000 (32, 20, 1) [[0.336], [0.337], [0.338], [0.339], [0...
- TF之AutoML框架:AutoML框架的简介、特点、使用方法详细攻略 目录 AutoML框架的简介 AutoML框架的特点 AutoML框架的使用方法 AutoML VS AutoKeras 框架 AutoML框架的简介 AutoML官网:https://www.automl.org/ 自动化机器学习,简单来说就是一种自动化任... TF之AutoML框架:AutoML框架的简介、特点、使用方法详细攻略 目录 AutoML框架的简介 AutoML框架的特点 AutoML框架的使用方法 AutoML VS AutoKeras 框架 AutoML框架的简介 AutoML官网:https://www.automl.org/ 自动化机器学习,简单来说就是一种自动化任...
- ML之NN:利用神经网络的BP算法解决XOR类(异或非)问题(BP solve XOR Problem) 目录 输出结果 实现代码 输出结果 实现代码 #BP solve XOR Problemimport numpy as np X = np.array ([[1, 0, 0], [1, 0, 1], [1, ... ML之NN:利用神经网络的BP算法解决XOR类(异或非)问题(BP solve XOR Problem) 目录 输出结果 实现代码 输出结果 实现代码 #BP solve XOR Problemimport numpy as np X = np.array ([[1, 0, 0], [1, 0, 1], [1, ...
- DL之FCN:FCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 FCN算法的简介(论文介绍) 0、FCN性能—实验结果 1、全卷积神经网络的特点、局限性、缺点 FCN算法的架构详解 FCN算法的案例应用 相关... DL之FCN:FCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 FCN算法的简介(论文介绍) 0、FCN性能—实验结果 1、全卷积神经网络的特点、局限性、缺点 FCN算法的架构详解 FCN算法的案例应用 相关...
- Keras之ML~P:基于Keras中建立的简单的二分类问题的神经网络模型(根据200个数据样本预测新的5个样本)——概率预测 目录 输出结果 核心代码 输出结果 核心代码 # -*- coding: utf-8 -*- #Keras之ML~P:基于Keras中建立的简单的二分类问题的神经网络模型(根据200个... Keras之ML~P:基于Keras中建立的简单的二分类问题的神经网络模型(根据200个数据样本预测新的5个样本)——概率预测 目录 输出结果 核心代码 输出结果 核心代码 # -*- coding: utf-8 -*- #Keras之ML~P:基于Keras中建立的简单的二分类问题的神经网络模型(根据200个...
- DL之CNN:计算机视觉之卷积神经网络经典算法简介、重要进展、改进技巧之详细攻略(建议收藏) 目录 CNN经典算法细讲 1、CNN历年冠军算法 1.1、LeNet-5 1.2、AlexNet 1.3、VGGNet DL之CNN:计算机视觉之卷积神经网络经典算法简介、重要进展、改进技巧之详细攻略(建议收藏) 目录 CNN经典算法细讲 1、CNN历年冠军算法 1.1、LeNet-5 1.2、AlexNet 1.3、VGGNet
- DL之DNN:基于神经网络(从1层~50层)DNN算法实现对非线性数据集点进行绘制决策边界 目录 输出结果 设计代码 输出结果 设计代码 首先查看数据集 import numpy as npfrom sklearn.datasets impo... DL之DNN:基于神经网络(从1层~50层)DNN算法实现对非线性数据集点进行绘制决策边界 目录 输出结果 设计代码 输出结果 设计代码 首先查看数据集 import numpy as npfrom sklearn.datasets impo...
- DL之DNN:利用numpy自定义三层结构+softmax函数建立3层完整神经网络全部代码实现(探究BP神经网络的底层思想) 目录 输出结果 代码实现 输出结果 代码实现 #DL之NN:利用numpy自定义三... DL之DNN:利用numpy自定义三层结构+softmax函数建立3层完整神经网络全部代码实现(探究BP神经网络的底层思想) 目录 输出结果 代码实现 输出结果 代码实现 #DL之NN:利用numpy自定义三...
- DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理 目录 BP类神经网络理解 1、信号正向传播FP 2、误差反向传播BP+GD BP类神经网络理解 1、BP算法 1、信号正向传播FP ... DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理 目录 BP类神经网络理解 1、信号正向传播FP 2、误差反向传播BP+GD BP类神经网络理解 1、BP算法 1、信号正向传播FP ...
- DL之SqueezeNet:SqueezeNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 SqueezeNet算法的简介(论文介绍) 1、轻量级的CNN架构优势 2、主要特点 3、常用的模型压缩技术 SqueezeNet算法的架构详解 SqueezeNet算法的案例应用 ... DL之SqueezeNet:SqueezeNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 SqueezeNet算法的简介(论文介绍) 1、轻量级的CNN架构优势 2、主要特点 3、常用的模型压缩技术 SqueezeNet算法的架构详解 SqueezeNet算法的案例应用 ...
- DL之CNN:利用CNN算法实现对句子分类+进行情感分析(预测句子情感) 目录 CNN算法设计思路 代码实现 CNN算法设计思路 b 代码实现 后期更新…… DL之CNN:利用CNN算法实现对句子分类+进行情感分析(预测句子情感) 目录 CNN算法设计思路 代码实现 CNN算法设计思路 b 代码实现 后期更新……
- DL之ResNeXt:ResNeXt算法的架构详解 相关文章DL之ResNeXt:ResNeXt算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之ResNeXt:ResNeXt算法的架构详解 ResNeXt算法的架构详解 1、主要思想——Inception与ResNet相互借鉴 Inceptio... DL之ResNeXt:ResNeXt算法的架构详解 相关文章DL之ResNeXt:ResNeXt算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之ResNeXt:ResNeXt算法的架构详解 ResNeXt算法的架构详解 1、主要思想——Inception与ResNet相互借鉴 Inceptio...
- DL之VGGNet:VGGNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 VGG系列神经网络算法简介 1、网络架构 2、实验结果 VGG系列神经网络的架构详解 VGG系列集合以及对比 VGG16练习攻略二 1、VGG16实践经验 VGG19 1、关于imagenet-vgg-verydeep-19.mat模型简介 ... DL之VGGNet:VGGNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 VGG系列神经网络算法简介 1、网络架构 2、实验结果 VGG系列神经网络的架构详解 VGG系列集合以及对比 VGG16练习攻略二 1、VGG16实践经验 VGG19 1、关于imagenet-vgg-verydeep-19.mat模型简介 ...
- TF之DeepDream:DeepDream前世今生之简介、安装、使用方法之详细攻略 目录 DeepDream前世今生之简介 DD的目的 DD特点 DD工作原理 DeepDream前世今生之安装 DeepDream前世今生之使用方法 DeepDream前世今生之简介  ... TF之DeepDream:DeepDream前世今生之简介、安装、使用方法之详细攻略 目录 DeepDream前世今生之简介 DD的目的 DD特点 DD工作原理 DeepDream前世今生之安装 DeepDream前世今生之使用方法 DeepDream前世今生之简介  ...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签