- 大家好,我是不温卜火,是一名计算机学院大数据专业大二的学生,昵称来源于成语—不温不火,本意是希望自己性情温和。作为一名互联网行业的小白,博主写博客一方面是为了记录自己的学习过程,另一方面是总结自己所犯的错误希望能够帮助到很多和自己一样处于起步阶段的萌新。但由于水平有限,博客中难免会有一些错误出现,有纰漏之处恳请各位大佬不吝赐教!暂时只有csdn这一个平台,博客... 大家好,我是不温卜火,是一名计算机学院大数据专业大二的学生,昵称来源于成语—不温不火,本意是希望自己性情温和。作为一名互联网行业的小白,博主写博客一方面是为了记录自己的学习过程,另一方面是总结自己所犯的错误希望能够帮助到很多和自己一样处于起步阶段的萌新。但由于水平有限,博客中难免会有一些错误出现,有纰漏之处恳请各位大佬不吝赐教!暂时只有csdn这一个平台,博客...
- 目录 NN-SVG PlotNeuralNet ConvNetDraw Draw_Convnet 本文介绍几款如何画出炫酷高大上的神经网络图工具,下面是常用的几种工具。 NN-SVG 这个工具可以非常方便的画出各种类型的图,是下面这位兄弟开发的,来自于麻省理工学院弗兰克尔生物工程实验室, 该实验室开发可视化和机器学习工具用于分析生物数据。 GitHub... 目录 NN-SVG PlotNeuralNet ConvNetDraw Draw_Convnet 本文介绍几款如何画出炫酷高大上的神经网络图工具,下面是常用的几种工具。 NN-SVG 这个工具可以非常方便的画出各种类型的图,是下面这位兄弟开发的,来自于麻省理工学院弗兰克尔生物工程实验室, 该实验室开发可视化和机器学习工具用于分析生物数据。 GitHub...
- 本文将展示如何利用Python中的NetworkX模块来绘制深度神经网络(DNN)结构图。 已知我们创建的DNN结构图如下: 该DNN模型由输入层、隐藏层、输出层和softmax函数组成,每一层的神经元个数分别为4,5,6,3,3。不知道聪明的读者有没有发现,这张示意图完全是由笔者自己用Python绘制出来的,因为并不存在现成的结构图。那么,如何利用Python来绘制... 本文将展示如何利用Python中的NetworkX模块来绘制深度神经网络(DNN)结构图。 已知我们创建的DNN结构图如下: 该DNN模型由输入层、隐藏层、输出层和softmax函数组成,每一层的神经元个数分别为4,5,6,3,3。不知道聪明的读者有没有发现,这张示意图完全是由笔者自己用Python绘制出来的,因为并不存在现成的结构图。那么,如何利用Python来绘制...
- 目录 一、感知器 二、感知器的例子 三、权重和阈值 四、决策模型 五、矢量化 六、神经网络的运作过程 七、神经网络的例子 八、输出的连续性 眼下最热门的技术,绝对是人工智能。 人工智能的底层模型是"神经网络"(neural network)。许多复杂的应用(比如模式识别、自动控制)和高级模型(比如深度学习)都基于它。学习人工智能,一定是从它开始。 ... 目录 一、感知器 二、感知器的例子 三、权重和阈值 四、决策模型 五、矢量化 六、神经网络的运作过程 七、神经网络的例子 八、输出的连续性 眼下最热门的技术,绝对是人工智能。 人工智能的底层模型是"神经网络"(neural network)。许多复杂的应用(比如模式识别、自动控制)和高级模型(比如深度学习)都基于它。学习人工智能,一定是从它开始。 ...
- 本文提出了一种通用的实现方法卷积神经网络(CNN)构建框架设计实时CNN。创建实时面部检测视觉系统,实现性别分类和情绪分类。 其中:IMDB性别分类测试准确率:96%;fer2013情绪分类测试准确率:66%。 具体效果如下图: 这里提供下数据集下载: 1、情绪分类模型数据集:https://www.kaggle.com/c/challenges-in-repr... 本文提出了一种通用的实现方法卷积神经网络(CNN)构建框架设计实时CNN。创建实时面部检测视觉系统,实现性别分类和情绪分类。 其中:IMDB性别分类测试准确率:96%;fer2013情绪分类测试准确率:66%。 具体效果如下图: 这里提供下数据集下载: 1、情绪分类模型数据集:https://www.kaggle.com/c/challenges-in-repr...
- 目录 项目背景 适用范围 使用方法 项目背景 相信一提起马赛克这个东西,不少小伙伴都痛心疾首,虽然最近几年也频繁传出有在研发去除马赛克的软件,一直没有成品问世。不过最近一位程序员及经过不断努力终于完成了这款软件。 据悉这位程序员“deeppomf”用深度神经网络开发出了一个能抹去马赛克让原图重现的神奇程序:DeepCreamPy 。为了使这款软件达到更好的效果... 目录 项目背景 适用范围 使用方法 项目背景 相信一提起马赛克这个东西,不少小伙伴都痛心疾首,虽然最近几年也频繁传出有在研发去除马赛克的软件,一直没有成品问世。不过最近一位程序员及经过不断努力终于完成了这款软件。 据悉这位程序员“deeppomf”用深度神经网络开发出了一个能抹去马赛克让原图重现的神奇程序:DeepCreamPy 。为了使这款软件达到更好的效果...
- 在本项目中,将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的验证码。验证码如下: 利用Keras可以快速方便地搭建CNN模型,本项目搭建的CNN模型如下: 将数据集分为训练集和测试集,占比为8:2,该模型训练的代码如下: # -*- coding: utf-8 -*-import numpy as npimport pandas as pdfrom... 在本项目中,将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的验证码。验证码如下: 利用Keras可以快速方便地搭建CNN模型,本项目搭建的CNN模型如下: 将数据集分为训练集和测试集,占比为8:2,该模型训练的代码如下: # -*- coding: utf-8 -*-import numpy as npimport pandas as pdfrom...
- 目录 M-P模型 Hebb学习规则 Rosenblatt感知器 Minsky的打击 复兴时期! 深度学习的突破 M-P模型 1943年神经元解剖学家McCulloch和数学天才Pitts发表文章提出神经元的数学描述和结构神经元遵循“全或无”原则证明了只要足够的简单神经元,在相互连接并同步运行的情况下,可以模拟任何计算函数开创工作被认为是人工神经网... 目录 M-P模型 Hebb学习规则 Rosenblatt感知器 Minsky的打击 复兴时期! 深度学习的突破 M-P模型 1943年神经元解剖学家McCulloch和数学天才Pitts发表文章提出神经元的数学描述和结构神经元遵循“全或无”原则证明了只要足够的简单神经元,在相互连接并同步运行的情况下,可以模拟任何计算函数开创工作被认为是人工神经网...
- 目录 人工神经网络-->>神经元 人工神经网络(ANN) 神经元仿生:单层感知器 性能评估函数: MATLAB实际操作实例 人工神经网络-->>神经元 人工神经网络(ANN) 是迄今为止几乎最为成功的仿生学数学模型,是机器学习领域的热点,符合智能化机器的时代潮流有统一的模型框架,很多算法问题可以归为神经网络系统学习问题加以解决(SVM支持向量机... 目录 人工神经网络-->>神经元 人工神经网络(ANN) 神经元仿生:单层感知器 性能评估函数: MATLAB实际操作实例 人工神经网络-->>神经元 人工神经网络(ANN) 是迄今为止几乎最为成功的仿生学数学模型,是机器学习领域的热点,符合智能化机器的时代潮流有统一的模型框架,很多算法问题可以归为神经网络系统学习问题加以解决(SVM支持向量机...
- 目录 神经网络基础: 神经网络进阶: 深度学习网络: 神经网络应用: 深度学习落地实现: 神经网络基础: 单层感知器线性神经网络BP 神经网络Hopfields神经网络径向基神经网络PCA和SVM 神经网络进阶: 自编码器稀疏自编码器玻尔兹曼机受限玻尔兹曼机递归神经 网络自组织竞争神经网络 深度学习网络: 深度置信网络卷积神经网络 深度残差网络 神经网络... 目录 神经网络基础: 神经网络进阶: 深度学习网络: 神经网络应用: 深度学习落地实现: 神经网络基础: 单层感知器线性神经网络BP 神经网络Hopfields神经网络径向基神经网络PCA和SVM 神经网络进阶: 自编码器稀疏自编码器玻尔兹曼机受限玻尔兹曼机递归神经 网络自组织竞争神经网络 深度学习网络: 深度置信网络卷积神经网络 深度残差网络 神经网络...
- 目录 1. 基于阈值的目标提取 1.1 二值化处理 1.2 阈值的确定 模态法 阈值确定其他方法 大津法 2. 基于颜色的目标提取 2.1 色相、亮度、饱和度 2.2颜色分量和组合处理 比如让你提取一幅照片中的苹果,还有可能遮挡 比如让你提取绿色的麦苗,如何使用二值图像呢? 3. 基于差分目标提取 3.1 帧间差分 3.2 背景差分 1.... 目录 1. 基于阈值的目标提取 1.1 二值化处理 1.2 阈值的确定 模态法 阈值确定其他方法 大津法 2. 基于颜色的目标提取 2.1 色相、亮度、饱和度 2.2颜色分量和组合处理 比如让你提取一幅照片中的苹果,还有可能遮挡 比如让你提取绿色的麦苗,如何使用二值图像呢? 3. 基于差分目标提取 3.1 帧间差分 3.2 背景差分 1....
- 1 基本概念 Cover和Hart在1968年提出了最初的临近算法 分类算法classfication 输入基于实例的学习instance-based learning ,懒惰学习lazy learning 2 例子: 对最后一个未知电影类型进行归类 对上图实例进行转化为特征向... 1 基本概念 Cover和Hart在1968年提出了最初的临近算法 分类算法classfication 输入基于实例的学习instance-based learning ,懒惰学习lazy learning 2 例子: 对最后一个未知电影类型进行归类 对上图实例进行转化为特征向...
- 目录 Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks 1. 摘要 2. 主要贡献 3. 算法流程 3.1 网络概述 3.2 网络设计 3.2.1 LSTM网络 3.2.2 编码-解码网络 3.2.3 网络训练 4. 结果展示 4.1 数据集 ... 目录 Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks 1. 摘要 2. 主要贡献 3. 算法流程 3.1 网络概述 3.2 网络设计 3.2.1 LSTM网络 3.2.2 编码-解码网络 3.2.3 网络训练 4. 结果展示 4.1 数据集 ...
- 论文地址:https://arxiv.org/pdf/2004.10934.pdf GitHub地址:https://github.com/AlexeyAB/darknet 觉得作者很地道,论文附上开源,没有比这更开心的事情了吧! 首先附上对论文总结的思维导图,帮助大家更好的理解! (思维导图和论文译文PDF均可在【计算机视觉联盟】后台回复yolov4获取) ... 论文地址:https://arxiv.org/pdf/2004.10934.pdf GitHub地址:https://github.com/AlexeyAB/darknet 觉得作者很地道,论文附上开源,没有比这更开心的事情了吧! 首先附上对论文总结的思维导图,帮助大家更好的理解! (思维导图和论文译文PDF均可在【计算机视觉联盟】后台回复yolov4获取) ...
- 作者:变胖是梦想2014 来源链接:https://www.jianshu.com/p/22151f39b50c 目录 CVPR-2018 references CVPR-2017 references ICCV-2017 references ECCV-2018 references CVPR-2018 1.CodeSlam:对单目sla... 作者:变胖是梦想2014 来源链接:https://www.jianshu.com/p/22151f39b50c 目录 CVPR-2018 references CVPR-2017 references ICCV-2017 references ECCV-2018 references CVPR-2018 1.CodeSlam:对单目sla...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签