- 人工智能是一个主题,尝试使用神经网络作为模型建立化合物物理性质的预测模型。机器学习库是由Google开发和使用的TensorFlow。Keras是一个使TensorFlow的神经网络功能更易于使用的软件包。 <数据集文件见:https://download.csdn.net/download/u012325865/10670205> 神经网络 神经元 &n... 人工智能是一个主题,尝试使用神经网络作为模型建立化合物物理性质的预测模型。机器学习库是由Google开发和使用的TensorFlow。Keras是一个使TensorFlow的神经网络功能更易于使用的软件包。 <数据集文件见:https://download.csdn.net/download/u012325865/10670205> 神经网络 神经元 &n...
- 今天给大家介绍Bioinformatics期刊的一篇文章,“Graph embedding on biomedical networks: methods, applications and evaluations”。文章研究了图嵌入方法在生物医学网络分析上的应用,来自美国俄亥俄州立大学、美国哥伦布国家儿童医院、华中农业大学的研究者完成了该项工作... 今天给大家介绍Bioinformatics期刊的一篇文章,“Graph embedding on biomedical networks: methods, applications and evaluations”。文章研究了图嵌入方法在生物医学网络分析上的应用,来自美国俄亥俄州立大学、美国哥伦布国家儿童医院、华中农业大学的研究者完成了该项工作...
- 研究背景 RNA分子是生物体内参与各种如细胞分化、代谢、记忆存储等重要生命活动的一类大分子,其常见的种类有rRNA、mRNA、tRNA。近年来越来越多的实验表明RNA似乎无处不在、无所不能,而事实上,编码用的mRNA才占1.5%,而非编码RNA则占据了人类基因组的75%。但是我们对绝大多数的非编码RNA了解甚少,主要原因是缺乏结构信息,因... 研究背景 RNA分子是生物体内参与各种如细胞分化、代谢、记忆存储等重要生命活动的一类大分子,其常见的种类有rRNA、mRNA、tRNA。近年来越来越多的实验表明RNA似乎无处不在、无所不能,而事实上,编码用的mRNA才占1.5%,而非编码RNA则占据了人类基因组的75%。但是我们对绝大多数的非编码RNA了解甚少,主要原因是缺乏结构信息,因...
- 简介 当通过深度学习输入有机物质中结构式的二维图像时,需要解决寻找分子式的问题。这是一个回归问题,需要计算结构式图像中包含的碳,氢,氧和氮等原子数。 基于化合物结构式图像估算分子式 环境 系统 :Win10 工具:RDKit、OpenCV、Keras、TensorFlow 任务步骤 训练数据300,000种化合物的SMILES字符串(足够... 简介 当通过深度学习输入有机物质中结构式的二维图像时,需要解决寻找分子式的问题。这是一个回归问题,需要计算结构式图像中包含的碳,氢,氧和氮等原子数。 基于化合物结构式图像估算分子式 环境 系统 :Win10 工具:RDKit、OpenCV、Keras、TensorFlow 任务步骤 训练数据300,000种化合物的SMILES字符串(足够...
- 人工智能是一个主题,尝试使用神经网络作为模型建立化合物物理性质的预测模型。机器学习库是由Google开发和使用的TensorFlow。Keras是一个使TensorFlow的神经网络功能更易于使用的软件包。 <数据集文件见:https://download.csdn.net/download/u012325865/10670205> 代码示例 ... 人工智能是一个主题,尝试使用神经网络作为模型建立化合物物理性质的预测模型。机器学习库是由Google开发和使用的TensorFlow。Keras是一个使TensorFlow的神经网络功能更易于使用的软件包。 <数据集文件见:https://download.csdn.net/download/u012325865/10670205> 代码示例 ...
- 基于深层神经网络使用单目摄像头实现物体识别节点功能包推荐 参考链接:公告::ROSwiki::Github源码::Deep Neural Networks (dnn module) 为了使机器人成为有用的工具,需要能够识别物体,以便可以对这些物体的行为进行编程。例如,在我们的机器人鸡尾酒服务员应用程序中,机器人必须能够找到房间里的人来服务。因为这是重要的功能,所以我们开发了... 基于深层神经网络使用单目摄像头实现物体识别节点功能包推荐 参考链接:公告::ROSwiki::Github源码::Deep Neural Networks (dnn module) 为了使机器人成为有用的工具,需要能够识别物体,以便可以对这些物体的行为进行编程。例如,在我们的机器人鸡尾酒服务员应用程序中,机器人必须能够找到房间里的人来服务。因为这是重要的功能,所以我们开发了...
- PyTorch | (1)初识PyTorch PyTorch | (2)PyTorch 入门-张量 PyTorch | (3)Tensor及其基本操作 PyTorch | (4)神经网络模型搭建和参数优化 基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效。如同使用PyTorch中的自动梯度方法一样,在搭建复杂的... PyTorch | (1)初识PyTorch PyTorch | (2)PyTorch 入门-张量 PyTorch | (3)Tensor及其基本操作 PyTorch | (4)神经网络模型搭建和参数优化 基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效。如同使用PyTorch中的自动梯度方法一样,在搭建复杂的...
- 1.研究背景 在生物医学领域,分析大规模、高维度的单细胞数据,并且处理由分批实验效应和不同制备造成的数据噪声是当前的挑战;单细胞数据的大规模、高维度处理比较困难,需要考虑数据中不同程度的噪声、分批效应、人工误差、稀疏异质性。 近年来,深度学习技术在处理生物医学数据方面的应用崭露头角,并取得不错的效果,这给大规模、高维度的单细胞数据分析处理... 1.研究背景 在生物医学领域,分析大规模、高维度的单细胞数据,并且处理由分批实验效应和不同制备造成的数据噪声是当前的挑战;单细胞数据的大规模、高维度处理比较困难,需要考虑数据中不同程度的噪声、分批效应、人工误差、稀疏异质性。 近年来,深度学习技术在处理生物医学数据方面的应用崭露头角,并取得不错的效果,这给大规模、高维度的单细胞数据分析处理...
- DeepChem 官网:https://deepchem.io/ DeepChem旨在提供高质量的开源工具链,将药物开发、材料科学、量子化学和生物学方面的深度学习应用普及化。 DeepChem提供了几种用于图卷积的特征提取方法。探索对其中一种图形卷积Featurizer所做的事情。 运行环境 CentOS 7 Python3.6 DeepChem2.2 ... DeepChem 官网:https://deepchem.io/ DeepChem旨在提供高质量的开源工具链,将药物开发、材料科学、量子化学和生物学方面的深度学习应用普及化。 DeepChem提供了几种用于图卷积的特征提取方法。探索对其中一种图形卷积Featurizer所做的事情。 运行环境 CentOS 7 Python3.6 DeepChem2.2 ...
- 化学信息学中的模型构建 将分子转换为特征向量(编码) 描述特征向量与目标分子特性(映射)之间的关系 K最近邻(kNN,k-NearestNeighbor) 将数据集放置在特征空间中(学习) 根据k个相邻数据点的值确定新点的值(预测) 当k = 1时:它被归类为“红色”以及最接近的红点。 当k = 3时,最接近的三个点是红色2蓝色1,并以多... 化学信息学中的模型构建 将分子转换为特征向量(编码) 描述特征向量与目标分子特性(映射)之间的关系 K最近邻(kNN,k-NearestNeighbor) 将数据集放置在特征空间中(学习) 根据k个相邻数据点的值确定新点的值(预测) 当k = 1时:它被归类为“红色”以及最接近的红点。 当k = 3时,最接近的三个点是红色2蓝色1,并以多...
- Chemistry.AI | 基于卷积神经网络(CNN)预测分子特性 环境准备 Python版本:Python 3.6.8 PyTorch版本:PyTorch1.1.0 RDKit版本:RDKit 2020.03.1 基于循环神经网络(RNN)预测分子性质 导入库 from rdkit import Chemfrom rdkit.Chem.Crippe... Chemistry.AI | 基于卷积神经网络(CNN)预测分子特性 环境准备 Python版本:Python 3.6.8 PyTorch版本:PyTorch1.1.0 RDKit版本:RDKit 2020.03.1 基于循环神经网络(RNN)预测分子性质 导入库 from rdkit import Chemfrom rdkit.Chem.Crippe...
- 1.简介 深度学习模型通常需要大量有标签数据才能训练出一个优良的分类器。但是,包括医学图像分析在内的一些应用无法满足这种数据要求,因为标注数据需要很多人力劳动。在这些情况下,多任务学习(MTL)可以通过使用来自其它相关学习任务的有用信息来帮助缓解这种数据稀疏问题。 微众银行首席智能官、香港科技大学讲座教授、国际人工智能联合会理事会主席、吴... 1.简介 深度学习模型通常需要大量有标签数据才能训练出一个优良的分类器。但是,包括医学图像分析在内的一些应用无法满足这种数据要求,因为标注数据需要很多人力劳动。在这些情况下,多任务学习(MTL)可以通过使用来自其它相关学习任务的有用信息来帮助缓解这种数据稀疏问题。 微众银行首席智能官、香港科技大学讲座教授、国际人工智能联合会理事会主席、吴...
- GCN: Graph Convolutional Network(图卷积网络) 环境准备 Python版本:Python 3.6.8 PyTorch版本:PyTorch1.1.0 RDKit版本:RDKit 2020.03.1 基于图卷积神经网络(GCN)预测分子性质 导入库 from rdkit import Chem... GCN: Graph Convolutional Network(图卷积网络) 环境准备 Python版本:Python 3.6.8 PyTorch版本:PyTorch1.1.0 RDKit版本:RDKit 2020.03.1 基于图卷积神经网络(GCN)预测分子性质 导入库 from rdkit import Chem...
- GCN GCN : 图卷积神经网络(Graph Convolutional Networks) 图卷积的原理 处理图形或网络的数据形式存在许多重要的实际问题,如社交网络、知识图形、蛋白质相互作用网络和分子图形等。然而,将深度学习应用于这些图形数据是非常重要的,因为它具有独特地图特征。人们非常关注神经网络模型对这种结构化图形数据的概括。过去的几年中,许多论文重新讨论推广神... GCN GCN : 图卷积神经网络(Graph Convolutional Networks) 图卷积的原理 处理图形或网络的数据形式存在许多重要的实际问题,如社交网络、知识图形、蛋白质相互作用网络和分子图形等。然而,将深度学习应用于这些图形数据是非常重要的,因为它具有独特地图特征。人们非常关注神经网络模型对这种结构化图形数据的概括。过去的几年中,许多论文重新讨论推广神...
- @Author:Runsen 使用 R-CNN 进行对象检测存在一些缺点。 R-CNN 消耗了大量的时间、存储和计算能力。R-CNN 有一个复杂的多阶段训练管道(3 阶段——对数损失、SVM 和 BBox 回归器的 L2 损失) 上一篇论文的同一作者(R-CNN)解决了 R-CNN 的一些缺点,构建了一个更快的对象检测算法,被称为 Fast R-CNN。 Fas... @Author:Runsen 使用 R-CNN 进行对象检测存在一些缺点。 R-CNN 消耗了大量的时间、存储和计算能力。R-CNN 有一个复杂的多阶段训练管道(3 阶段——对数损失、SVM 和 BBox 回归器的 L2 损失) 上一篇论文的同一作者(R-CNN)解决了 R-CNN 的一些缺点,构建了一个更快的对象检测算法,被称为 Fast R-CNN。 Fas...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签