- 神经风格迁移由 Leon Gatys 等人于 2015 年夏天提出。自首次提出以来,神经风格迁移算法已经做了许多改进,并衍生出许多变体,而且还成功转化成许多智能手机图片应用。 神经风格迁移是指将参考图像的风格应用于目标图像,同时保留目标图像的内容。 在当前语境下,风格(style)是指图像中不同空间尺度的纹理、颜色和视觉图案,内... 神经风格迁移由 Leon Gatys 等人于 2015 年夏天提出。自首次提出以来,神经风格迁移算法已经做了许多改进,并衍生出许多变体,而且还成功转化成许多智能手机图片应用。 神经风格迁移是指将参考图像的风格应用于目标图像,同时保留目标图像的内容。 在当前语境下,风格(style)是指图像中不同空间尺度的纹理、颜色和视觉图案,内...
- 要解决的问题 1、RCNN和SPPnet分多步训练,先要fine tuning一个预训练的网络,然后针对每个类别都训练一个SVM分类器,最后还要用regressors对bounding-box进行回归,另外region proposal也要单独用selective search的方式获得,步骤比较繁琐。 2、时间和内存消耗比较大。... 要解决的问题 1、RCNN和SPPnet分多步训练,先要fine tuning一个预训练的网络,然后针对每个类别都训练一个SVM分类器,最后还要用regressors对bounding-box进行回归,另外region proposal也要单独用selective search的方式获得,步骤比较繁琐。 2、时间和内存消耗比较大。...
- 更传统的机器学习算法可以在ee.Classifier下找到,需要点数据作为输入。 对于卷积神经网络,我们需要图像。图像块应包含图像和标签。 陆地卫星图像和云、阴影和水的标签。 在这里以 SPARCS 数据集为例。数据可以在下面的网站上找到。 ... 更传统的机器学习算法可以在ee.Classifier下找到,需要点数据作为输入。 对于卷积神经网络,我们需要图像。图像块应包含图像和标签。 陆地卫星图像和云、阴影和水的标签。 在这里以 SPARCS 数据集为例。数据可以在下面的网站上找到。 ...
- 导语:Google 正在积极研究如何改进全球天气预报模型。 准确预测未来几分钟到几周的天气是一项基本的科学挑战。很多气象机构目前采用的预报是基于大气的物理模型,但这些模型本身受到计算要求的限制且对物理定律的近似值非常敏感。另一种天气预报方法是使用深神经网络(DNNs)。DNNs 在强大的专用硬件(如 GPU 和 TPU)... 导语:Google 正在积极研究如何改进全球天气预报模型。 准确预测未来几分钟到几周的天气是一项基本的科学挑战。很多气象机构目前采用的预报是基于大气的物理模型,但这些模型本身受到计算要求的限制且对物理定律的近似值非常敏感。另一种天气预报方法是使用深神经网络(DNNs)。DNNs 在强大的专用硬件(如 GPU 和 TPU)...
- 卷积神经网络简介 我们将深入讲解卷积神经网络的原理,以及它在计算机视觉任务上为什么如此成功。但在此之前,我们先来看一个简单的卷积神经网络示例,即使用卷积神经网络对 MNIST 数字进行分类,这个任务我们在第 2 章用密集连接网络做过(当时的测试精度为 97.8%)。虽然本例中的卷积神经网络很简单,但其精度肯定会超过第 2 章的密集连接... 卷积神经网络简介 我们将深入讲解卷积神经网络的原理,以及它在计算机视觉任务上为什么如此成功。但在此之前,我们先来看一个简单的卷积神经网络示例,即使用卷积神经网络对 MNIST 数字进行分类,这个任务我们在第 2 章用密集连接网络做过(当时的测试精度为 97.8%)。虽然本例中的卷积神经网络很简单,但其精度肯定会超过第 2 章的密集连接...
- TensorFlow卷积层 TensorFlow 提供了 tf.nn.conv2d() 和 tf.nn.bias_add() 函数来创建你自己的卷积层。 # Output depthk_output = 64 # Image Propertiesimage_width = 10image_he... TensorFlow卷积层 TensorFlow 提供了 tf.nn.conv2d() 和 tf.nn.bias_add() 函数来创建你自己的卷积层。 # Output depthk_output = 64 # Image Propertiesimage_width = 10image_he...
- # Title文章标题 VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION # Summary 网络架构如下图: 卷积神经网络的输入是一个固定大小的224×224 RGB图像。做的唯一预处理是从每个像素中减去在训练集上计算的RGB平均值。图像通... # Title文章标题 VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION # Summary 网络架构如下图: 卷积神经网络的输入是一个固定大小的224×224 RGB图像。做的唯一预处理是从每个像素中减去在训练集上计算的RGB平均值。图像通...
- 一、One—Hot编码 计算机在表示多结果的分类时,使用One-Hot编码是比较常见的处理方式。即每个对象都有对应的列。 二、最大似然率 下面是两幅图像,比较两幅图像,试通过概率的方法来讨论一下为什么右边的模型会更好。 假设第一幅图像的每个点是对应颜色的概率为下图: 如果假设点的颜色是相互独立的,则整个图表的概率为... 一、One—Hot编码 计算机在表示多结果的分类时,使用One-Hot编码是比较常见的处理方式。即每个对象都有对应的列。 二、最大似然率 下面是两幅图像,比较两幅图像,试通过概率的方法来讨论一下为什么右边的模型会更好。 假设第一幅图像的每个点是对应颜色的概率为下图: 如果假设点的颜色是相互独立的,则整个图表的概率为...
- 在上一篇文章中,我们将数据导出到 Google Cloud Storage。在这篇文章中将读取数据并使用数据运行模型。有很多使用 colab 的例子。在这里,我们专注于在您的 PC 或服务器上训练您的模型。 从 gcp 存储桶下载数据。 使用 gsutil 将文件复制到您电脑上选择的文件夹中 gsutil -m cp -r gs... 在上一篇文章中,我们将数据导出到 Google Cloud Storage。在这篇文章中将读取数据并使用数据运行模型。有很多使用 colab 的例子。在这里,我们专注于在您的 PC 或服务器上训练您的模型。 从 gcp 存储桶下载数据。 使用 gsutil 将文件复制到您电脑上选择的文件夹中 gsutil -m cp -r gs...
- 通常我们希望 70% 的数据用于训练,20% 用于测试,10% 用于验证。下面你可以在 python 中找到一个示例来批量导出样本。我们更喜欢将 Python api 用于这些目的,因为我们只能为每个任务导出有限数量的点,而 Python 使我们能够自动执行此过程。 import eefrom time import sleepimp... 通常我们希望 70% 的数据用于训练,20% 用于测试,10% 用于验证。下面你可以在 python 中找到一个示例来批量导出样本。我们更喜欢将 Python api 用于这些目的,因为我们只能为每个任务导出有限数量的点,而 Python 使我们能够自动执行此过程。 import eefrom time import sleepimp...
- 使用很少的数据来训练一个图像分类模型,这是很常见的情况,如果你要从事计算机视觉方面的职业,很可能会在实践中遇到这种情况。“很少的”样本可能是几百张图像,也可能是几万张图像。来看一个实例,我们将重点讨论猫狗图像分类,数据集中包含 4000 张猫和狗的图像(2000 张猫的图像,2000 张狗的图像)。我们将 2000 张图像用于训练,10... 使用很少的数据来训练一个图像分类模型,这是很常见的情况,如果你要从事计算机视觉方面的职业,很可能会在实践中遇到这种情况。“很少的”样本可能是几百张图像,也可能是几万张图像。来看一个实例,我们将重点讨论猫狗图像分类,数据集中包含 4000 张猫和狗的图像(2000 张猫的图像,2000 张狗的图像)。我们将 2000 张图像用于训练,10...
- 想要将深度学习应用于小型图像数据集,一种常用且非常高效的方法是使用预训练网络。 预训练网络(pretrained network)是一个保存好的网络,之前已在大型数据集(通常是大规模图像分类任务)上训练好。如果这个原始数据集足够大且足够通用,那么预训练网络学到的特征的空间层次结构可以有效地作为视觉世界的通用模型,因此这些特征可用于各种不... 想要将深度学习应用于小型图像数据集,一种常用且非常高效的方法是使用预训练网络。 预训练网络(pretrained network)是一个保存好的网络,之前已在大型数据集(通常是大规模图像分类任务)上训练好。如果这个原始数据集足够大且足够通用,那么预训练网络学到的特征的空间层次结构可以有效地作为视觉世界的通用模型,因此这些特征可用于各种不...
- 本文介绍了 Inception 家族的主要成员,包括 Inception v1、Inception v2 、Inception v3、Inception v4 和 Inception-ResNet。它们的计算效率与参数效率在所有卷积架构中都是顶尖的。 Inception 网络是CNN分类器发展史上一个重要的里程碑。在 Inc... 本文介绍了 Inception 家族的主要成员,包括 Inception v1、Inception v2 、Inception v3、Inception v4 和 Inception-ResNet。它们的计算效率与参数效率在所有卷积架构中都是顶尖的。 Inception 网络是CNN分类器发展史上一个重要的里程碑。在 Inc...
- 论文题目:FeaturePyramidNetworksforObjectDetection论文链接:https://arxiv.org/abs/1612.03144 所要解决的问题 针对小目标检测... 论文题目:FeaturePyramidNetworksforObjectDetection论文链接:https://arxiv.org/abs/1612.03144 所要解决的问题 针对小目标检测...
- 论文题目:Recurrent Models of Visual Attention 论文链接:http://www.oalib.com/paper/4082117 作者及单位 研究目标 研究如何减少图像相关任务的计算量, 提出通过使用attention based RNN模型建立序列模型(recurrent attenti... 论文题目:Recurrent Models of Visual Attention 论文链接:http://www.oalib.com/paper/4082117 作者及单位 研究目标 研究如何减少图像相关任务的计算量, 提出通过使用attention based RNN模型建立序列模型(recurrent attenti...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
回顾中
热门标签