- @TOC 开篇语哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云/阿里云/华为云/51CTO;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。 我是一名后端开发爱好者,工作日常接触到最多的就是Java语言啦,所以我都尽量抽业余时间把自己所学到所会的,通过文章的形式进... @TOC 开篇语哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云/阿里云/华为云/51CTO;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。 我是一名后端开发爱好者,工作日常接触到最多的就是Java语言啦,所以我都尽量抽业余时间把自己所学到所会的,通过文章的形式进...
- 脑机接口(BCI)技术是神经科学与人工智能的前沿交叉领域,旨在实现大脑与外部设备的直接交互。信号处理是其关键环节,深度学习算法的应用带来了质的飞跃。通过强大的特征学习能力和端到端的学习方式,深度学习能自动提取复杂脑电信号中的有用信息,适应个体差异和多模态数据融合,显著提升了BCI系统的性能。尽管仍面临数据量小、可解释性差等挑战,但未来有望推动人机交互技术的重大突破。 脑机接口(BCI)技术是神经科学与人工智能的前沿交叉领域,旨在实现大脑与外部设备的直接交互。信号处理是其关键环节,深度学习算法的应用带来了质的飞跃。通过强大的特征学习能力和端到端的学习方式,深度学习能自动提取复杂脑电信号中的有用信息,适应个体差异和多模态数据融合,显著提升了BCI系统的性能。尽管仍面临数据量小、可解释性差等挑战,但未来有望推动人机交互技术的重大突破。
- 基于深度学习的文本信息提取方法研究(使用 PyTorch 和 TextCNN 框架) 介绍文本信息提取是自然语言处理(NLP)中的关键任务之一,涉及从非结构化文本中提取出有用的信息。TextCNN 是一种基于卷积神经网络(CNN)的模型,它在提取文本特征和分类任务中表现优秀,特别适合短文本的处理。 应用使用场景情感分析:识别用户评论或社交媒体帖子中的情感倾向。主题分类:将文档分类到不同的主... 基于深度学习的文本信息提取方法研究(使用 PyTorch 和 TextCNN 框架) 介绍文本信息提取是自然语言处理(NLP)中的关键任务之一,涉及从非结构化文本中提取出有用的信息。TextCNN 是一种基于卷积神经网络(CNN)的模型,它在提取文本特征和分类任务中表现优秀,特别适合短文本的处理。 应用使用场景情感分析:识别用户评论或社交媒体帖子中的情感倾向。主题分类:将文档分类到不同的主...
- R-CNN 系列模型的演进R-CNN(Region-based Convolutional Neural Networks):首次将 CNN 引入目标检测领域。使用选择性搜索(Selective Search)生成候选区域(Region Proposals),然后对每个区域分别进行 CNN 特征提取和分类。Fast R-CNN:改进 R-CNN 的低效问题,对整个图像进行一次 CNN 特征... R-CNN 系列模型的演进R-CNN(Region-based Convolutional Neural Networks):首次将 CNN 引入目标检测领域。使用选择性搜索(Selective Search)生成候选区域(Region Proposals),然后对每个区域分别进行 CNN 特征提取和分类。Fast R-CNN:改进 R-CNN 的低效问题,对整个图像进行一次 CNN 特征...
- 论文基本信息标题: Mask R-CNN作者: Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick会议: ICCV 2017发表时间: 2017 年论文链接: https://arxiv.org/abs/1703.06870 Mask R-CNN 的核心贡献Mask R-CNN 是 Faster R-CNN 的扩展,主要创新点... 论文基本信息标题: Mask R-CNN作者: Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick会议: ICCV 2017发表时间: 2017 年论文链接: https://arxiv.org/abs/1703.06870 Mask R-CNN 的核心贡献Mask R-CNN 是 Faster R-CNN 的扩展,主要创新点...
- 在科技飞速发展的当下,人工智能与元宇宙成为备受瞩目的前沿领域。人工智能的底层技术包括机器学习、深度学习和自然语言处理,赋予机器学习能力、图像识别和语言理解功能。元宇宙则依赖区块链、虚拟现实(VR/AR/MR)、数字孪生及高速网络等技术,构建去中心化、沉浸式和交互性强的虚拟世界。两者融合促进内容创作与用户体验提升,预示未来社会和经济发展的新方向。 在科技飞速发展的当下,人工智能与元宇宙成为备受瞩目的前沿领域。人工智能的底层技术包括机器学习、深度学习和自然语言处理,赋予机器学习能力、图像识别和语言理解功能。元宇宙则依赖区块链、虚拟现实(VR/AR/MR)、数字孪生及高速网络等技术,构建去中心化、沉浸式和交互性强的虚拟世界。两者融合促进内容创作与用户体验提升,预示未来社会和经济发展的新方向。
- 在计算机发展的历史长河中,图灵和冯·诺依曼的理论构建了现代计算机的基础,使我们得以划定哪些问题是“可计算”的,哪些则是“不可计算”的。图灵提出的停机问题揭示了计算的局限性,而冯·诺依曼体系结构则定义了计算机硬件的运行规则。这些理论和架构为后来的计算发展奠定了坚实的基础。然而,随着人工智能,特别是深度学习技术的崛起,以Transformer为代表的现代计算模型挑战了我们对“计算”的传统认知,模... 在计算机发展的历史长河中,图灵和冯·诺依曼的理论构建了现代计算机的基础,使我们得以划定哪些问题是“可计算”的,哪些则是“不可计算”的。图灵提出的停机问题揭示了计算的局限性,而冯·诺依曼体系结构则定义了计算机硬件的运行规则。这些理论和架构为后来的计算发展奠定了坚实的基础。然而,随着人工智能,特别是深度学习技术的崛起,以Transformer为代表的现代计算模型挑战了我们对“计算”的传统认知,模...
- 3D U-Net 实现 3D 医学影像的有效分割 介绍3D U-Net 是一种基于卷积神经网络(CNN)的深度学习架构,专门用于处理三维医学影像的分割任务。与传统的 2D 图像分割不同,3D U-Net 可以处理体积数据(如 MRI、CT 扫描),捕捉更全面的空间信息。 应用使用场景肿瘤检测:精确分割和识别肿瘤边界。器官自动分割:辅助医生快速标记重要器官。病灶分析:实现对疾病区域的精细化研... 3D U-Net 实现 3D 医学影像的有效分割 介绍3D U-Net 是一种基于卷积神经网络(CNN)的深度学习架构,专门用于处理三维医学影像的分割任务。与传统的 2D 图像分割不同,3D U-Net 可以处理体积数据(如 MRI、CT 扫描),捕捉更全面的空间信息。 应用使用场景肿瘤检测:精确分割和识别肿瘤边界。器官自动分割:辅助医生快速标记重要器官。病灶分析:实现对疾病区域的精细化研...
- 前言transformer是目前NLP甚至是整个深度学习领域不能不提到的框架,同时大部分LLM也是使用其进行训练生成模型,所以transformer几乎是目前每一个机器人开发者或者人工智能开发者不能越过的一个框架。接下来本文将从顶层往下去一步步掀开transformer的面纱。transformer概述Transformer模型来自论文Attention Is All You Need 。在... 前言transformer是目前NLP甚至是整个深度学习领域不能不提到的框架,同时大部分LLM也是使用其进行训练生成模型,所以transformer几乎是目前每一个机器人开发者或者人工智能开发者不能越过的一个框架。接下来本文将从顶层往下去一步步掀开transformer的面纱。transformer概述Transformer模型来自论文Attention Is All You Need 。在...
- 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含操作步骤视频)for t=1:Iterst for i=1:Num [pa(i)] = func_obj(xwoa(i,:)); Fitout = pa(i); %更新 if Fitout < woa_g... 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含操作步骤视频)for t=1:Iterst for i=1:Num [pa(i)] = func_obj(xwoa(i,:)); Fitout = pa(i); %更新 if Fitout < woa_g...
- DeepSeek是一款基于Transformer架构的大语言模型,以其在复杂逻辑推理任务上的卓越表现成为行业焦点。它通过自注意力机制高效捕捉长距离依赖关系,结合强化学习优化推理策略,利用思维链技术拆解复杂问题,并经过多阶段训练与精调提升推理能力。此外,DeepSeek融合知识图谱和外部知识,拓宽推理边界,使其在处理专业领域问题时更加准确和全面。 DeepSeek是一款基于Transformer架构的大语言模型,以其在复杂逻辑推理任务上的卓越表现成为行业焦点。它通过自注意力机制高效捕捉长距离依赖关系,结合强化学习优化推理策略,利用思维链技术拆解复杂问题,并经过多阶段训练与精调提升推理能力。此外,DeepSeek融合知识图谱和外部知识,拓宽推理边界,使其在处理专业领域问题时更加准确和全面。
- 深度Q网络(DQN)结合深度学习与Q学习,通过神经网络逼近Q值函数,指导智能体在不同状态下选择最优动作。其核心优势在于解决高维状态空间下的决策问题,利用经验回放机制和目标网络提高训练稳定性。设计高效DQN需考虑输入层、隐藏层及输出层结构,针对不同任务选择合适的网络架构,如CNN处理图像数据,MLP应对数值型状态。 深度Q网络(DQN)结合深度学习与Q学习,通过神经网络逼近Q值函数,指导智能体在不同状态下选择最优动作。其核心优势在于解决高维状态空间下的决策问题,利用经验回放机制和目标网络提高训练稳定性。设计高效DQN需考虑输入层、隐藏层及输出层结构,针对不同任务选择合适的网络架构,如CNN处理图像数据,MLP应对数值型状态。
- 1.算法运行效果图预览(完整程序运行后无水印) 2.算法运行软件版本MATLAB2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) a=2*(1-(t/Iters)); for i=1:Num for j=1:dim r1 = rand; r2 = rand;... 1.算法运行效果图预览(完整程序运行后无水印) 2.算法运行软件版本MATLAB2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) a=2*(1-(t/Iters)); for i=1:Num for j=1:dim r1 = rand; r2 = rand;...
- 梯度下降算法是优化模型参数的核心工具,包括批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)。BGD使用全部数据计算梯度,收敛稳定但计算量大;SGD每次仅用一个样本,更新快但波动大;MBGD则取两者折中,使用小批量样本,兼具稳定性和效率。选择合适的变体需考虑数据规模、计算资源及精度要求。 梯度下降算法是优化模型参数的核心工具,包括批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)。BGD使用全部数据计算梯度,收敛稳定但计算量大;SGD每次仅用一个样本,更新快但波动大;MBGD则取两者折中,使用小批量样本,兼具稳定性和效率。选择合适的变体需考虑数据规模、计算资源及精度要求。
- 在数字化时代,图像质量常受噪声、雾气等因素影响。深度学习通过卷积神经网络(CNN)、自动编码器和生成对抗网络(GAN)等技术,为图像去噪、去雾和增强提供了高效解决方案。CNN自动提取特征,去除噪声和雾气;自动编码器通过低维表示重构图像;GAN通过对抗训练生成高质量图像。实践中需注重数据预处理、选择合适架构、模型训练及评估优化,以提升图像质量。深度学习正不断推动图像处理技术的进步。 在数字化时代,图像质量常受噪声、雾气等因素影响。深度学习通过卷积神经网络(CNN)、自动编码器和生成对抗网络(GAN)等技术,为图像去噪、去雾和增强提供了高效解决方案。CNN自动提取特征,去除噪声和雾气;自动编码器通过低维表示重构图像;GAN通过对抗训练生成高质量图像。实践中需注重数据预处理、选择合适架构、模型训练及评估优化,以提升图像质量。深度学习正不断推动图像处理技术的进步。
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签