- 大模型部署手记(14)Chinese+Chinese-LLaMA-Alpaca-2+Ubuntu+vLLM 大模型部署手记(14)Chinese+Chinese-LLaMA-Alpaca-2+Ubuntu+vLLM
- 本文记录了笔者利用和学习mindspore深度学习框架的实践项目。根据给出的股票时序信息,分别搭建了MLP模型和LSTM模型实现股票预测,在最后的结果产出上,可以明显看出LSTM捕捉前后文时序信息的优势所在。在本次实践中,代码运行环境为python3.7.10,数据集为几支股票在2017.4.03-2017.9.01期间的价格变化,至于相关的函数库如numpy不一一赘述。读入数据后,名为SP... 本文记录了笔者利用和学习mindspore深度学习框架的实践项目。根据给出的股票时序信息,分别搭建了MLP模型和LSTM模型实现股票预测,在最后的结果产出上,可以明显看出LSTM捕捉前后文时序信息的优势所在。在本次实践中,代码运行环境为python3.7.10,数据集为几支股票在2017.4.03-2017.9.01期间的价格变化,至于相关的函数库如numpy不一一赘述。读入数据后,名为SP...
- MetaGPT( The Multi-Agent Framework):颠覆AI开发的革命性多智能体元编程框架 MetaGPT( The Multi-Agent Framework):颠覆AI开发的革命性多智能体元编程框架
- 1写在前面工作原因,顺便整理博文内容为一个 人脸检测服务分享以打包 Docker 镜像,可以直接使用服务目前支持 http 方式该检测器主要适用低质量人脸图片处理理解不足小伙伴帮忙指正,多交流,相互学习 对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼... 1写在前面工作原因,顺便整理博文内容为一个 人脸检测服务分享以打包 Docker 镜像,可以直接使用服务目前支持 http 方式该检测器主要适用低质量人脸图片处理理解不足小伙伴帮忙指正,多交流,相互学习 对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼...
- 🤵♂️ 个人主页: @AI_magician📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。👨💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱🏍🙋♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (六) 作者: ... 🤵♂️ 个人主页: @AI_magician📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。👨💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱🏍🙋♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (六) 作者: ...
- 数字时代的自我呈现:探索个人形象打造的创新工具——FaceChain深度学习模型工具 数字时代的自我呈现:探索个人形象打造的创新工具——FaceChain深度学习模型工具
- 本文深入探讨了深度信念网络DBN的核心概念、结构、Pytorch实战,分析其在深度学习网络中的定位、潜力与应用场景。 本文深入探讨了深度信念网络DBN的核心概念、结构、Pytorch实战,分析其在深度学习网络中的定位、潜力与应用场景。
- 本文深入探讨了前馈神经网络(FNN)的核心原理、结构、训练方法和先进变体。通过Python和PyTorch的实战演示,揭示了FNN的多样化应用。 本文深入探讨了前馈神经网络(FNN)的核心原理、结构、训练方法和先进变体。通过Python和PyTorch的实战演示,揭示了FNN的多样化应用。
- 在本文中,我们深入探讨了循环神经网络(RNN)及其高级变体,包括长短时记忆网络(LSTM)、门控循环单元(GRU)和双向循环神经网络(Bi-RNN)。文章详细介绍了RNN的基本概念、工作原理和应用场景,同时提供了使用PyTorch构建、训练和评估RNN模型的完整代码指南。 在本文中,我们深入探讨了循环神经网络(RNN)及其高级变体,包括长短时记忆网络(LSTM)、门控循环单元(GRU)和双向循环神经网络(Bi-RNN)。文章详细介绍了RNN的基本概念、工作原理和应用场景,同时提供了使用PyTorch构建、训练和评估RNN模型的完整代码指南。
- 本篇文章深入探讨了计算视觉的定义和主要任务。内容涵盖了图像分类与识别、物体检测与分割、人体分析、三维计算机视觉、视频理解与分析等技术,最后展示了无监督学习与自监督学习在计算机视觉中的应用。 本篇文章深入探讨了计算视觉的定义和主要任务。内容涵盖了图像分类与识别、物体检测与分割、人体分析、三维计算机视觉、视频理解与分析等技术,最后展示了无监督学习与自监督学习在计算机视觉中的应用。
- 本文深入浅出地探讨了OpenCV库在图像处理和深度学习中的应用。从基本概念和操作,到复杂的图像变换和深度学习模型的使用,文章以详尽的代码和解释,带领大家步入OpenCV的实战世界。 本文深入浅出地探讨了OpenCV库在图像处理和深度学习中的应用。从基本概念和操作,到复杂的图像变换和深度学习模型的使用,文章以详尽的代码和解释,带领大家步入OpenCV的实战世界。
- 本文通过详细且实践性的方式介绍了 PyTorch 的使用,包括环境安装、基础知识、张量操作、自动求导机制、神经网络创建、数据处理、模型训练、测试以及模型的保存和加载。 本文通过详细且实践性的方式介绍了 PyTorch 的使用,包括环境安装、基础知识、张量操作、自动求导机制、神经网络创建、数据处理、模型训练、测试以及模型的保存和加载。
- 大模型部署手记(13)LLaMa2+Chinese-LLaMA-Plus-2-7B+Windows+LangChain+摘要问答 大模型部署手记(13)LLaMa2+Chinese-LLaMA-Plus-2-7B+Windows+LangChain+摘要问答
- 大模型部署手记(12)LLaMa2+Chinese-LLaMA-Plus-2-7B+Windows+text-gen+中文对话 大模型部署手记(12)LLaMa2+Chinese-LLaMA-Plus-2-7B+Windows+text-gen+中文对话
- 大模型部署手记(8)LLaMa2+Windows+llama.cpp+英文文本补齐 大模型部署手记(8)LLaMa2+Windows+llama.cpp+英文文本补齐
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签