- batch 深度学习的优化算法,即梯度下降。有批梯度下降,随机梯度下降 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。使用batch梯度下降法时,每次迭代你都需要历遍整个训练集,这称为Batch gradient descent,批梯度下降。这个算法每个迭代需要处理大量训练样本,该算法的主要弊端在于特别是在训练样本数量巨大的时候,单次迭... batch 深度学习的优化算法,即梯度下降。有批梯度下降,随机梯度下降 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。使用batch梯度下降法时,每次迭代你都需要历遍整个训练集,这称为Batch gradient descent,批梯度下降。这个算法每个迭代需要处理大量训练样本,该算法的主要弊端在于特别是在训练样本数量巨大的时候,单次迭...
- 目录 1、MNIST 2、ImageNet 4、COCO 5、PASCAL VOC 6、FDDB 1、MNIST 深度学习领域的入门数据集,当前主流的深度学习框架几乎都将MNIST数据集的处理入门第一教程。MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28,数字放在一个归一化的、... 目录 1、MNIST 2、ImageNet 4、COCO 5、PASCAL VOC 6、FDDB 1、MNIST 深度学习领域的入门数据集,当前主流的深度学习框架几乎都将MNIST数据集的处理入门第一教程。MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28,数字放在一个归一化的、...
- 前馈神经网络 首先我先寻找了知乎中的一个介绍进行学习:https://www.zhihu.com/question/22553761/answer/126474394 来自知乎学者YJango的回答:https://www.zhihu.com/people/YJango,以及其它... 前馈神经网络 首先我先寻找了知乎中的一个介绍进行学习:https://www.zhihu.com/question/22553761/answer/126474394 来自知乎学者YJango的回答:https://www.zhihu.com/people/YJango,以及其它...
- 说说soft-nms和nms那些事 前言什么是非极大抑制?传统的非极大抑制产生的问题?soft-nms 前言 今天来介绍下非极大抑制。 什么是非极大抑制? 目标检测算法会输出多个检测边框,尤其是在真实目标周围会有很多置信度高的检测边框。为了去除重复的检测边框,达到每个物体有且只有一个检测结果的目的。非极大值抑制(Non-maximum suppre... 说说soft-nms和nms那些事 前言什么是非极大抑制?传统的非极大抑制产生的问题?soft-nms 前言 今天来介绍下非极大抑制。 什么是非极大抑制? 目标检测算法会输出多个检测边框,尤其是在真实目标周围会有很多置信度高的检测边框。为了去除重复的检测边框,达到每个物体有且只有一个检测结果的目的。非极大值抑制(Non-maximum suppre...
- 一、自编码器 自编码器(Autoencoder)是一种旨在将它们的输入复制到的输出的神经网络。他们通过将输入压缩成一种隐藏空间表示(latent-space representation),然后这种重构这种表示的输出进行工作。这种网络由两部分组成: 编码器:将输入压缩为潜在空间表示。可以用编码函数h = f(x)表示。 解码器:这部分旨在重构来自隐藏空间表示的输入。... 一、自编码器 自编码器(Autoencoder)是一种旨在将它们的输入复制到的输出的神经网络。他们通过将输入压缩成一种隐藏空间表示(latent-space representation),然后这种重构这种表示的输出进行工作。这种网络由两部分组成: 编码器:将输入压缩为潜在空间表示。可以用编码函数h = f(x)表示。 解码器:这部分旨在重构来自隐藏空间表示的输入。...
- 深度学习: 学习率 (learning rate) 作者:liulina603 致敬 原文:https://blog.csdn.net/liulina603/article/details/80604385 深度学习: 学习率 (learning rate) Intro... 深度学习: 学习率 (learning rate) 作者:liulina603 致敬 原文:https://blog.csdn.net/liulina603/article/details/80604385 深度学习: 学习率 (learning rate) Intro...
- 数据(Data):信息数据元素(Data Element):数据的基本单位,由若干数据项组成。数据项(Data Item):具有独立含义的最小单位。数据对象(Data Object):元素的集合数据结构(Data Structure):三要素(逻辑结构、存储结构、数据运算:增、删、改、查)逻辑结构:数据元素之间的关系(逻辑结构形式上用二元组,B=(K,R),K是结点的集... 数据(Data):信息数据元素(Data Element):数据的基本单位,由若干数据项组成。数据项(Data Item):具有独立含义的最小单位。数据对象(Data Object):元素的集合数据结构(Data Structure):三要素(逻辑结构、存储结构、数据运算:增、删、改、查)逻辑结构:数据元素之间的关系(逻辑结构形式上用二元组,B=(K,R),K是结点的集...
- 文/张志华近年来,人工智能的强势崛起,特别是去年AlphaGo和韩国九段棋手李世石的人机大战,让我们深刻地领略到了人工智能技术的巨大潜力。数据是载体,智能是目标,而机器学习是从数据通往智能的技术、方法途径。因此,机器学习是数据科学的核心,是现代人工智能的本质。通俗地说,机器学习就是从数据中挖掘出有价值的信息。数据本身是无意识的,它不能自动呈现出有用的信息。怎样才能找出有价值的东西呢?第一步要... 文/张志华近年来,人工智能的强势崛起,特别是去年AlphaGo和韩国九段棋手李世石的人机大战,让我们深刻地领略到了人工智能技术的巨大潜力。数据是载体,智能是目标,而机器学习是从数据通往智能的技术、方法途径。因此,机器学习是数据科学的核心,是现代人工智能的本质。通俗地说,机器学习就是从数据中挖掘出有价值的信息。数据本身是无意识的,它不能自动呈现出有用的信息。怎样才能找出有价值的东西呢?第一步要...
- 文/张志华中文翻译初稿下载免费阅读,仅供研究学习使用深度学习这个术语自2006年被正式提出后,在最近10年得到了巨大的发展,它使人工智能产生了革命性的技术突破,让我们切实地领略到人工智能改变人类生活的潜力。受人民邮电出版社的邀请,我的几位学生承担了Goodfellow, Bengio 和 Courville (后续简称他们为GBC)撰写的《Deep Learning》一书翻译工作。原著三位作... 文/张志华中文翻译初稿下载免费阅读,仅供研究学习使用深度学习这个术语自2006年被正式提出后,在最近10年得到了巨大的发展,它使人工智能产生了革命性的技术突破,让我们切实地领略到人工智能改变人类生活的潜力。受人民邮电出版社的邀请,我的几位学生承担了Goodfellow, Bengio 和 Courville (后续简称他们为GBC)撰写的《Deep Learning》一书翻译工作。原著三位作...
- 2017年3月9日,周四晚上8点30分,PaddlePaddle 官方开源社区成员李钊带来了主题为“深度学习第二课:个性化推荐”的交流。以下是主持人小冰整理的问答实录,记录了老师和读者问答的精彩时刻。问:看到你在生物信息学上使用深度学习技术,能分享一下深度学习在生物信息学、疾病预测等方面的应用吗?或者你们探索的经历?答:我们当初研究的是一种非编码 RNA,叫 microRNA,它对调控基因表... 2017年3月9日,周四晚上8点30分,PaddlePaddle 官方开源社区成员李钊带来了主题为“深度学习第二课:个性化推荐”的交流。以下是主持人小冰整理的问答实录,记录了老师和读者问答的精彩时刻。问:看到你在生物信息学上使用深度学习技术,能分享一下深度学习在生物信息学、疾病预测等方面的应用吗?或者你们探索的经历?答:我们当初研究的是一种非编码 RNA,叫 microRNA,它对调控基因表...
- 《深度学习》这本书是机器学习领域的重磅书籍,三位作者分别是机器学习界名人、GAN的提出者、谷歌大脑研究科学家 Ian Goodfellow,神经网络领域创始三位创始人之一的蒙特利尔大学教授 Yoshua Bengio(也是 Ian Goodfellow的老师)、同在蒙特利尔大学的神经网络与数据挖掘教授 Aaron Courville。只看作者阵容就知道这本书肯定能够从深度学习的基础知识和原理... 《深度学习》这本书是机器学习领域的重磅书籍,三位作者分别是机器学习界名人、GAN的提出者、谷歌大脑研究科学家 Ian Goodfellow,神经网络领域创始三位创始人之一的蒙特利尔大学教授 Yoshua Bengio(也是 Ian Goodfellow的老师)、同在蒙特利尔大学的神经网络与数据挖掘教授 Aaron Courville。只看作者阵容就知道这本书肯定能够从深度学习的基础知识和原理...
- 「Deep Learning」这本书是机器学习领域的重磅书籍,三位作者分别是机器学习界名人、GAN的提出者、谷歌大脑研究科学家 Ian Goodfellow,神经网络领域创始三位创始人之一的蒙特利尔大学教授 Yoshua Bengio(也是 Ian Goodfellow的老师)、同在蒙特利尔大学的神经网络与数据挖掘教授 Aaron Courville。只看作者阵容就知道这本书肯定能够从深度学... 「Deep Learning」这本书是机器学习领域的重磅书籍,三位作者分别是机器学习界名人、GAN的提出者、谷歌大脑研究科学家 Ian Goodfellow,神经网络领域创始三位创始人之一的蒙特利尔大学教授 Yoshua Bengio(也是 Ian Goodfellow的老师)、同在蒙特利尔大学的神经网络与数据挖掘教授 Aaron Courville。只看作者阵容就知道这本书肯定能够从深度学...
- 【异周话题 第 18 期】TensorFlow与PyTorch,深度学习框架你选哪一个? 话题背景 1月26日,谷歌在 GitHub 上正式发布了 TensorFlow 的最新版本 1.5.0,并开源了其代码。支持 CUDA 9 和 cuDNN 7 被认为是本次更新的最重要部分。TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,2015年11月在GitHub... 【异周话题 第 18 期】TensorFlow与PyTorch,深度学习框架你选哪一个? 话题背景 1月26日,谷歌在 GitHub 上正式发布了 TensorFlow 的最新版本 1.5.0,并开源了其代码。支持 CUDA 9 和 cuDNN 7 被认为是本次更新的最重要部分。TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,2015年11月在GitHub...
- 深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。在第一层中做初步计算,然后神经元将... 深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。在第一层中做初步计算,然后神经元将...
- 「Deep Learning」是机器学习领域的重磅书籍,不管你有没有入手开始阅读,AI 研习社都希望给大家提供一个共同讨论、共同提高的机会。我们请来了曾在百度和阿里工作过的资深算法工程师王奇文与大家一起分享他的读书感受。分享人:王奇文,资深算法工程师,曾在百度和阿里工作,先后做过推荐系统、分布式、数据挖掘、用户建模、聊天机器人。“算法路上,砥砺前行”。大家好,这次给大家讲的是「Deep le... 「Deep Learning」是机器学习领域的重磅书籍,不管你有没有入手开始阅读,AI 研习社都希望给大家提供一个共同讨论、共同提高的机会。我们请来了曾在百度和阿里工作过的资深算法工程师王奇文与大家一起分享他的读书感受。分享人:王奇文,资深算法工程师,曾在百度和阿里工作,先后做过推荐系统、分布式、数据挖掘、用户建模、聊天机器人。“算法路上,砥砺前行”。大家好,这次给大家讲的是「Deep le...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签