- 前言 Dirichlet分布(Dirichelt Distribution)和Dirichlet过程 (Dirichlet Process)广泛应用于信息检索、自然语言处理等领域,是理解主题模型的重要一步。而且它作为一种非参数模型(non-paramatric model),和参数模型一样有着越来越广泛的应用。 文本提供了一种对Di... 前言 Dirichlet分布(Dirichelt Distribution)和Dirichlet过程 (Dirichlet Process)广泛应用于信息检索、自然语言处理等领域,是理解主题模型的重要一步。而且它作为一种非参数模型(non-paramatric model),和参数模型一样有着越来越广泛的应用。 文本提供了一种对Di...
- 前言 招聘业务是多行为场景,用户需求和交互周期短、行为稀疏。本次分享基于业务挑战,将介绍代价敏感、向量检索等技术在招聘深度召回中的应用,最后总结实践中的教训与心得。 主要内容包括: 58招聘业务场景 招聘推荐系统 基于行为的向量化召回 实时深度召回 教训和心得 01 58招聘业务场景... 前言 招聘业务是多行为场景,用户需求和交互周期短、行为稀疏。本次分享基于业务挑战,将介绍代价敏感、向量检索等技术在招聘深度召回中的应用,最后总结实践中的教训与心得。 主要内容包括: 58招聘业务场景 招聘推荐系统 基于行为的向量化召回 实时深度召回 教训和心得 01 58招聘业务场景...
- 前言 本文主要介绍怎么使用 ELK Stack 帮助我们打造一个支撑起日产 TB 级的日志监控系统。在企业级的微服务环境中,跑着成百上千个服务都算是比较小的规模了。在生产环境上,日志扮演着很重要的角色,排查异常需要日志,性能优化需要日志,业务排查需要业务等等。 然而在生产上跑着成百上千个服务,每个服务都只会简单的本地... 前言 本文主要介绍怎么使用 ELK Stack 帮助我们打造一个支撑起日产 TB 级的日志监控系统。在企业级的微服务环境中,跑着成百上千个服务都算是比较小的规模了。在生产环境上,日志扮演着很重要的角色,排查异常需要日志,性能优化需要日志,业务排查需要业务等等。 然而在生产上跑着成百上千个服务,每个服务都只会简单的本地...
- 前言 许多刚入门数据分析的小伙伴对一些数据指标或者数据本身的概念很模糊,尤其是当跟运营、数据分析师扯需求的时候,会被这些密密麻麻的指标给弄糊涂。 作为互联网从业人员,目前看来对数据指标、指标的运用还是需要再深入学习下。终于挤出一些时间重新梳理了关于数据指标相关的一些知识,先梳理下数据指标基础知识... 前言 许多刚入门数据分析的小伙伴对一些数据指标或者数据本身的概念很模糊,尤其是当跟运营、数据分析师扯需求的时候,会被这些密密麻麻的指标给弄糊涂。 作为互联网从业人员,目前看来对数据指标、指标的运用还是需要再深入学习下。终于挤出一些时间重新梳理了关于数据指标相关的一些知识,先梳理下数据指标基础知识...
- 前言 随着在线音乐商城及流媒体音乐服务的出现,数字音乐分发已经使得音乐触手可及。然而,面对突然出现的海量可收听内容,听众很容易面临信息过载的问题。因此,本次分享的主题音乐推荐系统,将为那些面临海量内容的用户提供一些引导。本文将重点介绍其中的两种音乐推荐系统:基于内容和上下文的音乐推荐。 01基于内容的音乐推荐 内容信息涵盖了任何可... 前言 随着在线音乐商城及流媒体音乐服务的出现,数字音乐分发已经使得音乐触手可及。然而,面对突然出现的海量可收听内容,听众很容易面临信息过载的问题。因此,本次分享的主题音乐推荐系统,将为那些面临海量内容的用户提供一些引导。本文将重点介绍其中的两种音乐推荐系统:基于内容和上下文的音乐推荐。 01基于内容的音乐推荐 内容信息涵盖了任何可...
- 前言 广告是支撑互联网高速发展的经济基石,也是很多互联网公司的重要收入来源。字节跳动的广告平台管理着 EB 量级的数据和服务着数以千万的商业用户,其中 ClickHouse 作为核心引擎支撑了海量数据在线分析的需求。本次分享,将介绍 ClickHouse 在字节跳动广告业务上的应用与实践,包含人群预估、数据分析、人群画像等多个场景。并... 前言 广告是支撑互联网高速发展的经济基石,也是很多互联网公司的重要收入来源。字节跳动的广告平台管理着 EB 量级的数据和服务着数以千万的商业用户,其中 ClickHouse 作为核心引擎支撑了海量数据在线分析的需求。本次分享,将介绍 ClickHouse 在字节跳动广告业务上的应用与实践,包含人群预估、数据分析、人群画像等多个场景。并...
- 前言 关联规则分析就是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式、关联、相关性或因果结构。 “啤酒与尿布”的例子相信很多人都听说过吧,故事是这样的:在一家超市中,人们发现了一个特别有趣的现象,尿布与啤酒这两种风马牛不相及的商品居然摆在一起。但这一奇怪的举措居然使尿布和啤酒的销... 前言 关联规则分析就是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式、关联、相关性或因果结构。 “啤酒与尿布”的例子相信很多人都听说过吧,故事是这样的:在一家超市中,人们发现了一个特别有趣的现象,尿布与啤酒这两种风马牛不相及的商品居然摆在一起。但这一奇怪的举措居然使尿布和啤酒的销...
- 本文主要在Spark平台下实现一个机器学习应用,该应用主要涉及LDA主题模型以及K-means聚类。通过本文你可以了解到: 文本挖掘的基本流程 LDA主题模型算法 K-means算法 Spark平台下LDA主题模型实现 Spark平台下基于LDA的K-means算法实现 1.文本挖掘模块设计 1.... 本文主要在Spark平台下实现一个机器学习应用,该应用主要涉及LDA主题模型以及K-means聚类。通过本文你可以了解到: 文本挖掘的基本流程 LDA主题模型算法 K-means算法 Spark平台下LDA主题模型实现 Spark平台下基于LDA的K-means算法实现 1.文本挖掘模块设计 1....
- 前言 有人离职是因为“世界那么大,我想去看看”,也有人觉得“怀有绝技在身,不怕天下无路”。 文中涉及完整源码请参见, Python源码集锦-员工离职预测模型 员工离职对于企业而言有什么影响呢? 数据分析精华案例-员工流失建模与预测实例 要知道,业培养人才需要大量的成本,为了防止人才再次流失,员工流失分析就显得十分重要了。... 前言 有人离职是因为“世界那么大,我想去看看”,也有人觉得“怀有绝技在身,不怕天下无路”。 文中涉及完整源码请参见, Python源码集锦-员工离职预测模型 员工离职对于企业而言有什么影响呢? 数据分析精华案例-员工流失建模与预测实例 要知道,业培养人才需要大量的成本,为了防止人才再次流失,员工流失分析就显得十分重要了。...
- 前言 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高级教程 01部分结论:TikTok的大幅上涨来源 1. 供给侧 ( 努力 ) 内容量大幅提升:主要来自于开放跟拍... 前言 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高级教程 01部分结论:TikTok的大幅上涨来源 1. 供给侧 ( 努力 ) 内容量大幅提升:主要来自于开放跟拍...
- 前言 近年来,随着 GDPR 通用数据保护条例出台以及一些互联网公司数据隐私泄漏等事件的发生,数据隐私的保护问题在行业应用中备受关注。与数据密切相关的机器学习算法的安全性成为一个巨大挑战。本文将介绍在机器学习领域中数据隐私安全的相关工作,并介绍第四范式在差分隐私算法效果提升上所做的工作。 主要和大家分享数据隐私的3方面: 隐... 前言 近年来,随着 GDPR 通用数据保护条例出台以及一些互联网公司数据隐私泄漏等事件的发生,数据隐私的保护问题在行业应用中备受关注。与数据密切相关的机器学习算法的安全性成为一个巨大挑战。本文将介绍在机器学习领域中数据隐私安全的相关工作,并介绍第四范式在差分隐私算法效果提升上所做的工作。 主要和大家分享数据隐私的3方面: 隐...
- 前言 58同城作为分类信息网站,服务覆盖多个领域,如房屋租售、招聘求职、二手买卖等等,不同的业务有不同的特点,这使得多业务融合推荐成为一大挑战。如何准确挖掘用户的需求?如何平衡各业务之间的流量分配?如何增加多样性提升用户体验? 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB... 前言 58同城作为分类信息网站,服务覆盖多个领域,如房屋租售、招聘求职、二手买卖等等,不同的业务有不同的特点,这使得多业务融合推荐成为一大挑战。如何准确挖掘用户的需求?如何平衡各业务之间的流量分配?如何增加多样性提升用户体验? 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB...
- 一、决策树 所谓决策树,就是自顶而下树形的结构,每一个节点都是一个属性。用决策树解决问题就是根据数据属性一层一层做决策的过程 好处:结构清晰,模仿人类思考的流程。 以下为某商品经过推销后,收集回来的客户信息,包括居住地区、住房类型、收入、是否老客户四种属性,最后一列代表该客户买没买。 1.用树状的结构表示上面的信息表... 一、决策树 所谓决策树,就是自顶而下树形的结构,每一个节点都是一个属性。用决策树解决问题就是根据数据属性一层一层做决策的过程 好处:结构清晰,模仿人类思考的流程。 以下为某商品经过推销后,收集回来的客户信息,包括居住地区、住房类型、收入、是否老客户四种属性,最后一列代表该客户买没买。 1.用树状的结构表示上面的信息表...
- 前言 目前,双塔结构在推荐领域里已经是个常规方法了,在召回和粗排环节的模型选型中,被广泛采用。其实,不仅仅是在推荐领域,在其它领域,双塔结构也已经被越来越多得用起来了。比如,在当代搜索引擎的召回环节,除了常见的经典倒排索引来对Query和Document进行文本字面匹配外,经常也会增加一路基于Bert模型的双塔结构,将用户查询Quer... 前言 目前,双塔结构在推荐领域里已经是个常规方法了,在召回和粗排环节的模型选型中,被广泛采用。其实,不仅仅是在推荐领域,在其它领域,双塔结构也已经被越来越多得用起来了。比如,在当代搜索引擎的召回环节,除了常见的经典倒排索引来对Query和Document进行文本字面匹配外,经常也会增加一路基于Bert模型的双塔结构,将用户查询Quer...
- 前言 随着深度学习的普及,有越来越多的研究应用新模型到中文分词上,让人直呼“手快有,手慢无”。不过这些神经网络方法的真实水平如何?具体数值多少?以Sighan05中的PKU数据集为例,真像一些论文所言,一个LSTM-CRF就有96.5%吗?或者像某些工业界人士那样,动辄“基于深度学习的98%准确率”,“99% 的分词成功率”吗? 如... 前言 随着深度学习的普及,有越来越多的研究应用新模型到中文分词上,让人直呼“手快有,手慢无”。不过这些神经网络方法的真实水平如何?具体数值多少?以Sighan05中的PKU数据集为例,真像一些论文所言,一个LSTM-CRF就有96.5%吗?或者像某些工业界人士那样,动辄“基于深度学习的98%准确率”,“99% 的分词成功率”吗? 如...
上滑加载中
推荐直播
-
仓颉编程语言开源创新人才培养经验分享
2025/08/06 周三 19:00-20:00
张引 -华为开发者布道师-高校教师
热情而富有活力的仓颉社区为学生的学习提供了一个充满机遇和挑战的平台。本次直播探讨如何运用社区的力量帮助同学们变身为开源开发者,从而完成从学生到工程师身份的转变。
回顾中 -
“全域洞察·智控未来” ——云资源监控实战
2025/08/08 周五 15:00-16:00
星璇 华为云监控产品经理,霄图 华为云监控体验设计师,云枢 华为云可观测产品经理
本期直播深度解析全栈监控技术实践,揭秘华为云、头部企业如何通过智能监控实现业务零中断,分享高可用系统背后的“鹰眼系统”。即刻预约,解锁数字化转型的运维密码!
回顾中
热门标签