- 词向量one hot编码词向量编码思想Word2VecEmbeddingSkip-gram的原理负采样 前言:深度学习网络rnn能解决有序的问题,我们就生活在这样一个有序的世界。比如时间,音乐,说话的句子,甚至一场比赛,比如最近正在举办的俄罗斯世界杯。... 词向量one hot编码词向量编码思想Word2VecEmbeddingSkip-gram的原理负采样 前言:深度学习网络rnn能解决有序的问题,我们就生活在这样一个有序的世界。比如时间,音乐,说话的句子,甚至一场比赛,比如最近正在举办的俄罗斯世界杯。...
- 化学领域,对物理性质的预测模型和化合物的生成模型的研究变得活跃。最近,尝试使用深度学习来预测有机化合物合成所需的化学反应。 问题设置:反应预测和逆向合成路线搜索 在化学反应中,可以使用具有“ ABC >> D”的反应SMILES进行使反应物 A和B 在催化剂 ... 化学领域,对物理性质的预测模型和化合物的生成模型的研究变得活跃。最近,尝试使用深度学习来预测有机化合物合成所需的化学反应。 问题设置:反应预测和逆向合成路线搜索 在化学反应中,可以使用具有“ ABC >> D”的反应SMILES进行使反应物 A和B 在催化剂 ...
- Chainer Chemistry Chainer Chemistry是一个使用Chainer的化学和生物学深度学习库。 Github地址:https : //github.com/pfnet-research/chainer-chemistry 手册地址:https : //chainer-che... Chainer Chemistry Chainer Chemistry是一个使用Chainer的化学和生物学深度学习库。 Github地址:https : //github.com/pfnet-research/chainer-chemistry 手册地址:https : //chainer-che...
- OpenCV简介 OpenCV是计算机视觉领域应用最广泛的开源工具包,基于C/C++,支持Linux/Windows/MacOS/Android/iOS,并提供了Python,Matlab和Java等语言的接口,因为其丰富的接口,优秀的性能和商业友好的使用许可,不管是学术界还是业界中都非常受欢迎。OpenCV最早源于Intel公司1998年的一个研究项目,当时在Intel从... OpenCV简介 OpenCV是计算机视觉领域应用最广泛的开源工具包,基于C/C++,支持Linux/Windows/MacOS/Android/iOS,并提供了Python,Matlab和Java等语言的接口,因为其丰富的接口,优秀的性能和商业友好的使用许可,不管是学术界还是业界中都非常受欢迎。OpenCV最早源于Intel公司1998年的一个研究项目,当时在Intel从...
- 基于深层神经网络使用单目摄像头实现物体识别节点功能包推荐 参考链接:公告::ROSwiki::Github源码::Deep Neural Networks (dnn module) 为了使机器人成为有用的工具,需要能够识别物体,以便可以对这些物体的行为进行编程。例如,在我们的机器人鸡尾酒服务员应用程序中,机器人必须能够找到房间里的人来服务。因为这是重要的功能,所以我们开发了... 基于深层神经网络使用单目摄像头实现物体识别节点功能包推荐 参考链接:公告::ROSwiki::Github源码::Deep Neural Networks (dnn module) 为了使机器人成为有用的工具,需要能够识别物体,以便可以对这些物体的行为进行编程。例如,在我们的机器人鸡尾酒服务员应用程序中,机器人必须能够找到房间里的人来服务。因为这是重要的功能,所以我们开发了...
- 引言 Deep Graph Library (DGL) 是一个在图上做深度学习的框架。在0.3.1版本中,DGL支持了基于PyTorch的化学模型库。 如何生成分子图是我感兴趣的。 环境准备 PyTorch:深度学习框架 DGL:用于图上的深度学习,支持PyTorch、MXNet等多种深度学习框架 RDK... 引言 Deep Graph Library (DGL) 是一个在图上做深度学习的框架。在0.3.1版本中,DGL支持了基于PyTorch的化学模型库。 如何生成分子图是我感兴趣的。 环境准备 PyTorch:深度学习框架 DGL:用于图上的深度学习,支持PyTorch、MXNet等多种深度学习框架 RDK...
- 深度学习(Deep Learning) 深度学习是基于机器学习延伸出来的一个新的领域,由以人大脑结构为启发的神经网络算法为起源加之模型结构深度的增加发展,并伴随大数据和计算能力的提高而产生的一系列新的算法。 深度学习什么时间段发展起来的? 其概念由著名科学家... 深度学习(Deep Learning) 深度学习是基于机器学习延伸出来的一个新的领域,由以人大脑结构为启发的神经网络算法为起源加之模型结构深度的增加发展,并伴随大数据和计算能力的提高而产生的一系列新的算法。 深度学习什么时间段发展起来的? 其概念由著名科学家...
- 今天给大家介绍的是2020年1月在Chemical Science上发表的论文“Target identification among known drugs by deep learning from heterogeneous networks”。在不了解完整的药物靶标信息的情况下,开发有效的药物是一个巨大的挑战。本研究为药物靶标识别提供了一个... 今天给大家介绍的是2020年1月在Chemical Science上发表的论文“Target identification among known drugs by deep learning from heterogeneous networks”。在不了解完整的药物靶标信息的情况下,开发有效的药物是一个巨大的挑战。本研究为药物靶标识别提供了一个...
- nature methods副主编,Arunima Singh,3月4日在nature methods上发表文章,探讨了基于深度学习的蛋白质结构预测方向近期的研究进展。 蛋白质结构预测是近几十年来的研究热点,理论方法使人们深入了解了实验难以处理的蛋白质结构。同时,随着测定蛋白质结构的实验方法的改进,大量高质量蛋白质结构数据可... nature methods副主编,Arunima Singh,3月4日在nature methods上发表文章,探讨了基于深度学习的蛋白质结构预测方向近期的研究进展。 蛋白质结构预测是近几十年来的研究热点,理论方法使人们深入了解了实验难以处理的蛋白质结构。同时,随着测定蛋白质结构的实验方法的改进,大量高质量蛋白质结构数据可...
- 分子生成 具有理想药理特性新分子的发现是计算药物发现中的关键问题。传统上,这项任务是通过临床合成候选化合物并对其进行实验来完成的。但是,由于化学空间是巨大的,合成分子并对其进行广泛的实验是非常耗时的任务。从头设计药物不是在分子中寻找具有所需特性的空间,而是设计具有我们感兴趣特性的新化合物。 事实证明,深度学习的最新进展,尤其是深度生成模型在从头药物设计中具有不可估量的价值... 分子生成 具有理想药理特性新分子的发现是计算药物发现中的关键问题。传统上,这项任务是通过临床合成候选化合物并对其进行实验来完成的。但是,由于化学空间是巨大的,合成分子并对其进行广泛的实验是非常耗时的任务。从头设计药物不是在分子中寻找具有所需特性的空间,而是设计具有我们感兴趣特性的新化合物。 事实证明,深度学习的最新进展,尤其是深度生成模型在从头药物设计中具有不可估量的价值...
- @Author:Runsen 最近,一直在学习Google Colab。可以来说,学习Ai,入门就是Google Colab 文章目录 Google Colab 启动Google Colab 从GitHub上传笔记本 Kaggle上传数据 Google云端硬盘读取文件 使用硬件加速器GPU Google Colab中的TP... @Author:Runsen 最近,一直在学习Google Colab。可以来说,学习Ai,入门就是Google Colab 文章目录 Google Colab 启动Google Colab 从GitHub上传笔记本 Kaggle上传数据 Google云端硬盘读取文件 使用硬件加速器GPU Google Colab中的TP...
- Convolutional Neural Networks (CNN)卷积神经网络AutoEncoder 自动编码器Sparse Coding 稀疏编码Restricted Boltzmann Machine(RBM) 限制波尔兹曼机Deep Belief Networks(DBN) 深信... Convolutional Neural Networks (CNN)卷积神经网络AutoEncoder 自动编码器Sparse Coding 稀疏编码Restricted Boltzmann Machine(RBM) 限制波尔兹曼机Deep Belief Networks(DBN) 深信...
- DGL团队发布了以生命科学为重点的软件包DGL-LifeSci。 尝试使用新的DGL--LifeSci并建立Attentive FP模型并可视化其预测结果。 基于深度图学习框架DGL 环境准备 PyTorch:深度学习框架 DGL:基于PyTorch的库,支持深度学习以处理图形 RDKit:用于构建分子图并从字符串表示形式绘制结构式 DGL-... DGL团队发布了以生命科学为重点的软件包DGL-LifeSci。 尝试使用新的DGL--LifeSci并建立Attentive FP模型并可视化其预测结果。 基于深度图学习框架DGL 环境准备 PyTorch:深度学习框架 DGL:基于PyTorch的库,支持深度学习以处理图形 RDKit:用于构建分子图并从字符串表示形式绘制结构式 DGL-...
- 研究人员已经开发出一种使用深度学习来识别与疾病相关基因的人工神经网络。该研究发表在2020年2月12日《 Nature Communications》上。 人工神经网络揭示了大量基因表达数据中的模式,并发现了与疾病相关的基因。来自瑞典林雪平大学的开发人员希望该方法最终可以应用于精准医学和个性化治疗。 科学家根据不同蛋白质或基因如何相互作用... 研究人员已经开发出一种使用深度学习来识别与疾病相关基因的人工神经网络。该研究发表在2020年2月12日《 Nature Communications》上。 人工神经网络揭示了大量基因表达数据中的模式,并发现了与疾病相关的基因。来自瑞典林雪平大学的开发人员希望该方法最终可以应用于精准医学和个性化治疗。 科学家根据不同蛋白质或基因如何相互作用...
- @Author:Runsen 目标定位 图像分类或图像识别模型只是检测图像中对象的概率。与此相反,对象定位是指识别图像中对象的位置。对象定位算法将输出对象相对于图像的位置坐标。在计算机视觉中,定位图像中对象的最流行方法是借助边界框来表示其位置。 可以使用以下参数初始化边界框: bx, by : 边界框中心的坐标bw : 边界框的宽度 wrt 图像宽度bh : ... @Author:Runsen 目标定位 图像分类或图像识别模型只是检测图像中对象的概率。与此相反,对象定位是指识别图像中对象的位置。对象定位算法将输出对象相对于图像的位置坐标。在计算机视觉中,定位图像中对象的最流行方法是借助边界框来表示其位置。 可以使用以下参数初始化边界框: bx, by : 边界框中心的坐标bw : 边界框的宽度 wrt 图像宽度bh : ...
上滑加载中
推荐直播
-
基于开源鸿蒙+海思星闪开发板:嵌入式系统开发实战(Day1)
2025/03/29 周六 09:00-18:00
华为开发者布道师
本次为期两天的课程将深入讲解OpenHarmony操作系统及其与星闪技术的结合应用,涵盖WS63E星闪开发板的详细介绍、“OpenHarmony+星闪”的创新实践、实验环境搭建以及编写首个“Hello World”程序等内容,旨在帮助学员全面掌握相关技术并进行实际操作
回顾中 -
基于开源鸿蒙+海思星闪开发板:嵌入式系统开发实战(Day2)
2025/03/30 周日 09:00-12:00
华为开发者布道师
本次为期两天的课程将深入讲解OpenHarmony操作系统及其与星闪技术的结合应用,涵盖WS63E星闪开发板的详细介绍、“OpenHarmony+星闪”的创新实践、实验环境搭建以及编写首个“Hello World”程序等内容,旨在帮助学员全面掌握相关技术并进行实际操作
回顾中 -
从AI基础到昇腾:大模型初探、DeepSeek解析与昇腾入门
2025/04/02 周三 16:00-17:30
不易 / 华为云学堂技术讲师
昇腾是华为研发的AI芯片,其具有哪些能力?我们如何基于其进行开发?本期直播将从AI以及大模型基础知识开始,介绍人工智能核心概念、昇腾AI基础软硬件平台以及昇腾专区,旨在为零基础或入门级学习者搭建从AI基础知识到昇腾技术的完整学习路径。
回顾中
热门标签