- Python轻松实现办公自动化之docx插件,新建word以及添加图片 Python轻松实现办公自动化之docx插件,新建word以及添加图片
- 分层强化学习从月初更新到了月中,也准备告一段落了,后续深入研究强化学习,分层的理念多多少少都会涉及。面对复杂场景下的智能体决策问题,如何将复杂问题简单化总是不可避免的。如果后续还有值得分享算法,也会再开单文介绍。 分层强化学习从月初更新到了月中,也准备告一段落了,后续深入研究强化学习,分层的理念多多少少都会涉及。面对复杂场景下的智能体决策问题,如何将复杂问题简单化总是不可避免的。如果后续还有值得分享算法,也会再开单文介绍。
- 离线策略修正分层强化学习,Hierarchical Reinforcement Learning with Off-Policy Correction (HIRO) 是一种基于分层强化学习的算法,旨在解决长时间跨度和稀疏奖励问题。HIRO 特别引入了离策略(off-policy)校正机制,允许高层策略利用低层策略的经验,而不会因为低层策略的更新而产生偏差。 离线策略修正分层强化学习,Hierarchical Reinforcement Learning with Off-Policy Correction (HIRO) 是一种基于分层强化学习的算法,旨在解决长时间跨度和稀疏奖励问题。HIRO 特别引入了离策略(off-policy)校正机制,允许高层策略利用低层策略的经验,而不会因为低层策略的更新而产生偏差。
- 动态分层强化学习,Dynamic Hierarchical Reinforcement Learning (DHRL) 是一种自适应分层强化学习算法,其目标是根据任务和环境的复杂性动态地构建、修改和利用分层策略。DHRL 不仅仅是预定义层次结构的简单执行,而是允许代理在学习过程中根据需要动态生成和调整分层策略,从而实现更好的任务分解和高效学习。 DHRL 扩展了传统的分层强化学习(HRL),通过动 动态分层强化学习,Dynamic Hierarchical Reinforcement Learning (DHRL) 是一种自适应分层强化学习算法,其目标是根据任务和环境的复杂性动态地构建、修改和利用分层策略。DHRL 不仅仅是预定义层次结构的简单执行,而是允许代理在学习过程中根据需要动态生成和调整分层策略,从而实现更好的任务分解和高效学习。 DHRL 扩展了传统的分层强化学习(HRL),通过动
- Options Framework(选项框架)是分层强化学习中的一种经典方法,旨在通过将动作抽象化为**选项(Options)**来简化复杂任务的学习过程。基于Sutton等人提出的选项框架(Options Framework),其中选项是从一个子任务执行到完成的高层决策链。高层决策什么时候调用特定选项,低层负责具体执行选项的策略。 选项框架允许智能体在多个时间步内选择并执行较高级别的策略,而不 Options Framework(选项框架)是分层强化学习中的一种经典方法,旨在通过将动作抽象化为**选项(Options)**来简化复杂任务的学习过程。基于Sutton等人提出的选项框架(Options Framework),其中选项是从一个子任务执行到完成的高层决策链。高层决策什么时候调用特定选项,低层负责具体执行选项的策略。 选项框架允许智能体在多个时间步内选择并执行较高级别的策略,而不
- 半马尔可夫决策过程,Semi-Markov Decision Processes (SMDP) 是一种用于分层强化学习的模型,适用于那些包含不规则时间步或长期延迟决策的任务。相比于标准的马尔可夫决策过程(Markov Decision Process, MDP),SMDP 能够处理不同时间间隔之间的决策问题,因此在强化学习中广泛应用于分层结构,尤其是需要长时间跨度或多步策略的复杂任务中。 半马尔可夫决策过程,Semi-Markov Decision Processes (SMDP) 是一种用于分层强化学习的模型,适用于那些包含不规则时间步或长期延迟决策的任务。相比于标准的马尔可夫决策过程(Markov Decision Process, MDP),SMDP 能够处理不同时间间隔之间的决策问题,因此在强化学习中广泛应用于分层结构,尤其是需要长时间跨度或多步策略的复杂任务中。
- Hierarchical-DQN (Hierarchical Deep Q-Network) 是一种分层强化学习算法,专门设计用于解决复杂的任务,通过将任务分解为层次化的子任务来学习。它结合了深度 Q 网络(DQN)和分层强化学习的思想,将复杂任务分解为多个具有不同时间尺度的子任务。Hierarchical-DQN 的设计思路和 FeUdal Networks 类似,都是通过层次结构来解决长时间跨 Hierarchical-DQN (Hierarchical Deep Q-Network) 是一种分层强化学习算法,专门设计用于解决复杂的任务,通过将任务分解为层次化的子任务来学习。它结合了深度 Q 网络(DQN)和分层强化学习的思想,将复杂任务分解为多个具有不同时间尺度的子任务。Hierarchical-DQN 的设计思路和 FeUdal Networks 类似,都是通过层次结构来解决长时间跨
- Hierarchical Actor-Critic (HAC) 算法是一种用于分层强化学习(Hierarchical Reinforcement Learning, HRL)的算法,由Levy等人在2019年提出。HAC的目的是通过分层结构,将复杂任务分解为不同的时间尺度的子任务,从而更高效地学习策略。该算法使用了两层的Actor-Critic架构来实现策略和值函数的学习,并通过子任务的分解来降低 Hierarchical Actor-Critic (HAC) 算法是一种用于分层强化学习(Hierarchical Reinforcement Learning, HRL)的算法,由Levy等人在2019年提出。HAC的目的是通过分层结构,将复杂任务分解为不同的时间尺度的子任务,从而更高效地学习策略。该算法使用了两层的Actor-Critic架构来实现策略和值函数的学习,并通过子任务的分解来降低
- FeUdal Networks(FuN)是一种分层强化学习(Hierarchical Reinforcement Learning, HRL)算法,由Google DeepMind团队提出。该算法的灵感来源于层级控制结构,将任务分解为高层目标和低层执行细节,从而提高强化学习在复杂环境中的效率。与传统的强化学习算法不同,FeUdal Networks将学习过程分为不同的层次,每个层次的角色不同,但都 FeUdal Networks(FuN)是一种分层强化学习(Hierarchical Reinforcement Learning, HRL)算法,由Google DeepMind团队提出。该算法的灵感来源于层级控制结构,将任务分解为高层目标和低层执行细节,从而提高强化学习在复杂环境中的效率。与传统的强化学习算法不同,FeUdal Networks将学习过程分为不同的层次,每个层次的角色不同,但都
- 分层强化学习(Hierarchical Reinforcement Learning, HRL)通过将复杂问题分解为更小的子问题,显著提高了强化学习算法在解决高维状态空间和长期目标任务中的效率。Option-Critic架构是分层强化学习中一种非常有影响力的方法,专门用于自动发现和优化子策略(称为“Option”)。它是在经典的Options框架基础上提出的,用来处理分层决策问题,特别是可以在没有 分层强化学习(Hierarchical Reinforcement Learning, HRL)通过将复杂问题分解为更小的子问题,显著提高了强化学习算法在解决高维状态空间和长期目标任务中的效率。Option-Critic架构是分层强化学习中一种非常有影响力的方法,专门用于自动发现和优化子策略(称为“Option”)。它是在经典的Options框架基础上提出的,用来处理分层决策问题,特别是可以在没有
- 分层强化学习(Hierarchical Reinforcement Learning,HRL)是一类旨在通过引入多层次结构来提高强化学习算法效率的方法。其核心思想是将复杂的任务分解为若干子任务,通过解决这些子任务来最终完成整体目标。 分层强化学习(Hierarchical Reinforcement Learning,HRL)是一类旨在通过引入多层次结构来提高强化学习算法效率的方法。其核心思想是将复杂的任务分解为若干子任务,通过解决这些子任务来最终完成整体目标。
- MAXQ分解是一种用于分层强化学习(Hierarchical Reinforcement Learning, HRL)的算法,由Thomas G. Dietterich提出。该算法通过将复杂的任务分解成更小的子任务来简化问题,并利用这些子任务来构建更复杂的策略。主要思想是将一个复杂的Markov决策过程(MDP)分解成一系列嵌套的子MDP,以便更容易解决。MAXQ算法引入了一种分层的结构,将原始任 MAXQ分解是一种用于分层强化学习(Hierarchical Reinforcement Learning, HRL)的算法,由Thomas G. Dietterich提出。该算法通过将复杂的任务分解成更小的子任务来简化问题,并利用这些子任务来构建更复杂的策略。主要思想是将一个复杂的Markov决策过程(MDP)分解成一系列嵌套的子MDP,以便更容易解决。MAXQ算法引入了一种分层的结构,将原始任
- 首先看了一下任务计划书:https://bbs.huaweicloud.cn/blogs/441501 ,主要目的是让haystack能够在Ascend NPU和Kunpeng CPU上高效运行,确保项目在平台上具备良好的兼容性和性能,以显著提高企业的信息检索和问答系统的效率。即验证haystack能不能在 Ascend(昇腾)和 Kunpeng(鲲鹏)处理器中运行。 首先看了一下任务计划书:https://bbs.huaweicloud.cn/blogs/441501 ,主要目的是让haystack能够在Ascend NPU和Kunpeng CPU上高效运行,确保项目在平台上具备良好的兼容性和性能,以显著提高企业的信息检索和问答系统的效率。即验证haystack能不能在 Ascend(昇腾)和 Kunpeng(鲲鹏)处理器中运行。
- 在强化学习(RL)领域,如何稳定地优化策略是一个核心挑战。2015 年,由 John Schulman 等人提出的信赖域策略优化(Trust Region Policy Optimization, TRPO)算法为这一问题提供了优雅的解决方案。TRPO 通过限制策略更新的幅度,避免了策略更新过大导致的不稳定问题,是强化学习中经典的策略优化方法之一。TRPO 是一种基于策略梯度的优化算法,其目标是通 在强化学习(RL)领域,如何稳定地优化策略是一个核心挑战。2015 年,由 John Schulman 等人提出的信赖域策略优化(Trust Region Policy Optimization, TRPO)算法为这一问题提供了优雅的解决方案。TRPO 通过限制策略更新的幅度,避免了策略更新过大导致的不稳定问题,是强化学习中经典的策略优化方法之一。TRPO 是一种基于策略梯度的优化算法,其目标是通
- 在强化学习(Reinforcement Learning, RL)相关背景下,多级反馈队列(Multilevel Feedback Queue, MFQ)算法可以作为调度问题的求解框架,用于优化资源分配和任务调度策略。在这种情况下,MFQ的概念和机制可以被调整为一种面向学习的形式,其中调度策略通过强化学习算法来动态优化。 在强化学习(Reinforcement Learning, RL)相关背景下,多级反馈队列(Multilevel Feedback Queue, MFQ)算法可以作为调度问题的求解框架,用于优化资源分配和任务调度策略。在这种情况下,MFQ的概念和机制可以被调整为一种面向学习的形式,其中调度策略通过强化学习算法来动态优化。
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签