- 小样本学习 本baseline采用pytorch框架,应用ModelArts的Notebook进行开发 为该论文复现代码Cross-Domain Few-Shot Classification via Learned Feature-Wise TransformationHung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, Ming-Hsuan Yang... 小样本学习 本baseline采用pytorch框架,应用ModelArts的Notebook进行开发 为该论文复现代码Cross-Domain Few-Shot Classification via Learned Feature-Wise TransformationHung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, Ming-Hsuan Yang...
- M-SQL: Multi-Task Representation Learning for Single-Table Text2sql Generation虽然之前对 Text2SQL 的研究提供了一些可行的解决方案,但大多数都是基于列表示提取值。如果查询中有多个值,并且这些值属于不同的列,则以前基于列表示的方法无法准确提取值。该论文提出了一种基于预训练 BERT 的新神经网络架构,称为 ... M-SQL: Multi-Task Representation Learning for Single-Table Text2sql Generation虽然之前对 Text2SQL 的研究提供了一些可行的解决方案,但大多数都是基于列表示提取值。如果查询中有多个值,并且这些值属于不同的列,则以前基于列表示的方法无法准确提取值。该论文提出了一种基于预训练 BERT 的新神经网络架构,称为 ...
- 开发者必读!DTT技术公开课干货大合集来了,愿开发者们在新的一年在技术上实现新突破。 开发者必读!DTT技术公开课干货大合集来了,愿开发者们在新的一年在技术上实现新突破。
- 牵手!有限元“得助AI智慧双录”正式升级华为云云商店联营商品! 牵手!有限元“得助AI智慧双录”正式升级华为云云商店联营商品!
- ModelBox推理真的高效吗?“高性能推理”是ModelBox宣传的主要特性之一,不信谣不传谣的我决定通过原生API和ModelBox实现相同案例进行对比,看一下ModelBox推理是否真的“高性能”。我们分别使用onnxruntime与ModelBox Windows SDK对相同的模型实现相同的推理逻辑进行端到端性能对比,为了防止测试视频帧率成为性能瓶颈,我们准备了120fps的视频... ModelBox推理真的高效吗?“高性能推理”是ModelBox宣传的主要特性之一,不信谣不传谣的我决定通过原生API和ModelBox实现相同案例进行对比,看一下ModelBox推理是否真的“高性能”。我们分别使用onnxruntime与ModelBox Windows SDK对相同的模型实现相同的推理逻辑进行端到端性能对比,为了防止测试视频帧率成为性能瓶颈,我们准备了120fps的视频...
- ModelBox开发案例 - 体感小游戏前段时间,小鱼老师在AI说发布了文章 ModelBox推理真的高效吗,里面介绍了双阶段单人人体关键点检测案例,运行速度超快:使用原生的ONNXRuntime API做开发,可以达到36fps;而ModelBox版本(推理框架同样是ONNXRuntime),更是达到了接近80fps!于是乎,笔者产生了一个大胆的想法:这么快的人体关键点检测应用,不用来跑... ModelBox开发案例 - 体感小游戏前段时间,小鱼老师在AI说发布了文章 ModelBox推理真的高效吗,里面介绍了双阶段单人人体关键点检测案例,运行速度超快:使用原生的ONNXRuntime API做开发,可以达到36fps;而ModelBox版本(推理框架同样是ONNXRuntime),更是达到了接近80fps!于是乎,笔者产生了一个大胆的想法:这么快的人体关键点检测应用,不用来跑...
- ModelBox开发案例 - 使用OpenPose做多人人体关键点检测本案例将使用OpenPose模型,实现一个多人人体关键点检测应用,最终效果如下所示:本案例所需资源(代码、模型、测试数据等)已做成模板放到华为云上,查看和下载模板可以使用如下命令:Windows PC版本请使用solution.bat工具:PS ███\modelbox>: .\solution.bat -l...Sol... ModelBox开发案例 - 使用OpenPose做多人人体关键点检测本案例将使用OpenPose模型,实现一个多人人体关键点检测应用,最终效果如下所示:本案例所需资源(代码、模型、测试数据等)已做成模板放到华为云上,查看和下载模板可以使用如下命令:Windows PC版本请使用solution.bat工具:PS ███\modelbox>: .\solution.bat -l...Sol...
- ModelBox开发案例 - 使用Lightweight OpenPose做多人人体关键点检测本案例将使用Lightweight OpenPose模型,实现一个多人人体关键点检测应用,最终效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从multi_person_pose_lightweight_openpose下载(提取码为modbox),该目录中的资源列表说明如下:desc.... ModelBox开发案例 - 使用Lightweight OpenPose做多人人体关键点检测本案例将使用Lightweight OpenPose模型,实现一个多人人体关键点检测应用,最终效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从multi_person_pose_lightweight_openpose下载(提取码为modbox),该目录中的资源列表说明如下:desc....
- ModelBox开发指南 - 展开/合并功能单元本文将使用一个多人人体关键点检测的案例,介绍ModelBox中展开/合并功能单元的特性,案例效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从multi_person_pose_yolox_alpha_pose下载(提取码为modbox),该目录中的资源列表说明如下:desc.toml # 资源描述common.zip #... ModelBox开发指南 - 展开/合并功能单元本文将使用一个多人人体关键点检测的案例,介绍ModelBox中展开/合并功能单元的特性,案例效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从multi_person_pose_yolox_alpha_pose下载(提取码为modbox),该目录中的资源列表说明如下:desc.toml # 资源描述common.zip #...
- ModelBox开发指南 - 条件功能单元本文将使用一个单人人体关键点检测的案例,介绍ModelBox中条件功能单元的特性,案例效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从single_person_pose_yolox_alpha_pose下载(提取码为modbox),该目录中的资源列表说明如下:desc.toml # 资源描述common.zip # 公共数据... ModelBox开发指南 - 条件功能单元本文将使用一个单人人体关键点检测的案例,介绍ModelBox中条件功能单元的特性,案例效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从single_person_pose_yolox_alpha_pose下载(提取码为modbox),该目录中的资源列表说明如下:desc.toml # 资源描述common.zip # 公共数据...
- TSD(目标检测/Pytorch)论文名为《Revisiting the Sibling Head in Object Detector》,其提出基于任务间空间自适应解耦(task-aware spatial disentanglement,TSD)的检测算法能够有效的减弱通用物体检测中分类任务和回归任务之间的潜在冲突,可以灵活插入大多检测器中,在COCO和OpenImage上给任意bac... TSD(目标检测/Pytorch)论文名为《Revisiting the Sibling Head in Object Detector》,其提出基于任务间空间自适应解耦(task-aware spatial disentanglement,TSD)的检测算法能够有效的减弱通用物体检测中分类任务和回归任务之间的潜在冲突,可以灵活插入大多检测器中,在COCO和OpenImage上给任意bac...
- 基于协同过滤算法实现电影推荐 实验目标掌握如何使用机器学习算法全流程构建一个电影推荐系统的方案。掌握如何载入、查阅、清洗、合并用户的数据,并计算物品相似度矩阵。 案例内容介绍在本案例中,我们将会学习使用人工智能技术技术分析用户对电影的评分数据,并基于这个数据建立一个推荐系统,根据用户输入的一部感兴趣的电影,为其推荐其他可能感兴趣的电影。此案例中,我们使用的数据集是用户对电影的评分数据,包含... 基于协同过滤算法实现电影推荐 实验目标掌握如何使用机器学习算法全流程构建一个电影推荐系统的方案。掌握如何载入、查阅、清洗、合并用户的数据,并计算物品相似度矩阵。 案例内容介绍在本案例中,我们将会学习使用人工智能技术技术分析用户对电影的评分数据,并基于这个数据建立一个推荐系统,根据用户输入的一部感兴趣的电影,为其推荐其他可能感兴趣的电影。此案例中,我们使用的数据集是用户对电影的评分数据,包含...
- 基于K-means聚类算法进行客户人群分析 实验目标掌握如何通过机器学习算法进行用户群体分析;掌握如何使用pandas载入、查阅数据;掌握如何调节K-means算法的参数,来控制不同的聚类中心。 案例内容介绍在本案例中,我们使用人工智能技术的聚类算法去分析超市购物中心客户的一些基本数据,把客户分成不同的群体,供营销团队参考并相应地制定营销策略。俗话说,“物以类聚,人以群分”,聚类算法其实就... 基于K-means聚类算法进行客户人群分析 实验目标掌握如何通过机器学习算法进行用户群体分析;掌握如何使用pandas载入、查阅数据;掌握如何调节K-means算法的参数,来控制不同的聚类中心。 案例内容介绍在本案例中,我们使用人工智能技术的聚类算法去分析超市购物中心客户的一些基本数据,把客户分成不同的群体,供营销团队参考并相应地制定营销策略。俗话说,“物以类聚,人以群分”,聚类算法其实就...
- 目标检测算法套件使用指导本Notebook通过引导用户导入数据集、选择模型、训练并可视化推理,快速完成COCO数据集目标检测任务。 Step0 安装依赖包!pip install ipywidgets==7.7.1!pip install pillow==9.0.1!pip install pandas==1.3.4 Step1 加载算法、样例数据集与预训练模型完成模型的微调和探索经典的目... 目标检测算法套件使用指导本Notebook通过引导用户导入数据集、选择模型、训练并可视化推理,快速完成COCO数据集目标检测任务。 Step0 安装依赖包!pip install ipywidgets==7.7.1!pip install pillow==9.0.1!pip install pandas==1.3.4 Step1 加载算法、样例数据集与预训练模型完成模型的微调和探索经典的目...
- 4. 模型训练 4.1 导入相关的模块import osimport pandas as pdimport numpy as npimport timeimport torchfrom torch.autograd import Variableimport loggingimport copyimport argparsedevice = torch.device("cuda" if t... 4. 模型训练 4.1 导入相关的模块import osimport pandas as pdimport numpy as npimport timeimport torchfrom torch.autograd import Variableimport loggingimport copyimport argparsedevice = torch.device("cuda" if t...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
苏州工业园区“华为云杯”2025人工智能应用创新大赛赛中直播
2025/08/21 周四 16:00-17:00
Vz 华为云AIoT技术布道师
本期直播将与您一起探讨如何基于华为云IoT平台全场景云服务,结合AI、鸿蒙、大数据等技术,打造有创新性,有竞争力的方案和产品。
即将直播
热门标签