- OpenCV所有 的功能,这是第一版,后续会仔细进行校准。 · Main modules:主要功能core. Core functionality核心函数imgproc. Image processing图像处理imgcodecs. Image file reading and writing图像文件读写... OpenCV所有 的功能,这是第一版,后续会仔细进行校准。 · Main modules:主要功能core. Core functionality核心函数imgproc. Image processing图像处理imgcodecs. Image file reading and writing图像文件读写...
- 文章目录 接口文档cv2.imread() 读取图片cv2.imshow() 使用窗口显示图片cv2.imwrite()保存图片cv.namedWindow() 获取和修改像素点值图片属性RO... 文章目录 接口文档cv2.imread() 读取图片cv2.imshow() 使用窗口显示图片cv2.imwrite()保存图片cv.namedWindow() 获取和修改像素点值图片属性RO...
- Canny边缘检测 原图: import cv2 import numpy as np img = cv2.imread('sudu.png', 0) edges = cv2.Canny(img,... Canny边缘检测 原图: import cv2 import numpy as np img = cv2.imread('sudu.png', 0) edges = cv2.Canny(img,...
- 简 介: ※Apriltag检测是对基于视觉定位的一种比较简便的方法。本文讨论了在apriltag检测结果中的单应矩阵的效果,它与想象中可以直接应用绘制出Apriltag法向量的应用并不符合。对于粘... 简 介: ※Apriltag检测是对基于视觉定位的一种比较简便的方法。本文讨论了在apriltag检测结果中的单应矩阵的效果,它与想象中可以直接应用绘制出Apriltag法向量的应用并不符合。对于粘...
- 背景引言 在博文差分近似图像导数算子之Laplace算子中,我们提到Laplace算子对通过图像进行操作实现边缘检测的时,对离散点和噪声比较敏感。于是,首先对图像进行高斯暖卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声和离散点的Robust, 这一个过程中Laplacian of Gaussian(... 背景引言 在博文差分近似图像导数算子之Laplace算子中,我们提到Laplace算子对通过图像进行操作实现边缘检测的时,对离散点和噪声比较敏感。于是,首先对图像进行高斯暖卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声和离散点的Robust, 这一个过程中Laplacian of Gaussian(...
- 正在前面的系列博文中,介绍了多种特征算子,在本文中将介绍由Kanade-Lucas两人在上世纪80年代在其论文: An Iterative Image Registration Technique with an Application to Stereo Vision中提出的一个算子,后来称为KLT算法。该算法最开始是一种图像点定位... 正在前面的系列博文中,介绍了多种特征算子,在本文中将介绍由Kanade-Lucas两人在上世纪80年代在其论文: An Iterative Image Registration Technique with an Application to Stereo Vision中提出的一个算子,后来称为KLT算法。该算法最开始是一种图像点定位...
- 一,将图片序列转化为视频文件 [cpp] view plain copy 一,将图片序列转化为视频文件 [cpp] view plain copy
- 1.线性相关系数 两个变量的协方差除以他们的方差乘积的算术平方根等于这两个变量的线性相关系数 (1)相关系数的定义: r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5 =E[(ξ... 1.线性相关系数 两个变量的协方差除以他们的方差乘积的算术平方根等于这两个变量的线性相关系数 (1)相关系数的定义: r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5 =E[(ξ...
- 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义  ... 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义  ...
- (一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与... (一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与...
- 假如要从某一文件夹中读取66张图片,那么每次都使用I=imread('.....');这样处理速度不够快,不方便。下面就总结了几种批处理的方法。 在讲解这几种方法之前,先介绍MATLAB中的一个cell,这个cell相当于一个数组,只不过它允许不同的元素是不同的类型的,比如:cell(1,3) ... 假如要从某一文件夹中读取66张图片,那么每次都使用I=imread('.....');这样处理速度不够快,不方便。下面就总结了几种批处理的方法。 在讲解这几种方法之前,先介绍MATLAB中的一个cell,这个cell相当于一个数组,只不过它允许不同的元素是不同的类型的,比如:cell(1,3) ...
- 1.结构张量的作用: 能够区分图像中的平坦区域,边缘,角点; 2.图像中的结构张量的定义 1)是一个矩阵; 2)与图像的水平,垂直梯度有关,定义如下: 在MATL... 1.结构张量的作用: 能够区分图像中的平坦区域,边缘,角点; 2.图像中的结构张量的定义 1)是一个矩阵; 2)与图像的水平,垂直梯度有关,定义如下: 在MATL...
- 原文 今天在写这样一个程序,就是导入一个OBJ模型然后显示出来的时候,遇到了一个问题。我在程序中开启了多重采样,在屏幕上显示出来的效果确实有抗锯齿。但是当我用FBO离屏渲染,然后保存为BMP图像的时候,发现保存出来的BMP图像并没有抗锯齿效果。 问题产生原因及解决方案: 在默认帧缓冲中启用多重采样并不会导致FBO里也... 原文 今天在写这样一个程序,就是导入一个OBJ模型然后显示出来的时候,遇到了一个问题。我在程序中开启了多重采样,在屏幕上显示出来的效果确实有抗锯齿。但是当我用FBO离屏渲染,然后保存为BMP图像的时候,发现保存出来的BMP图像并没有抗锯齿效果。 问题产生原因及解决方案: 在默认帧缓冲中启用多重采样并不会导致FBO里也...
- 1.基本理论 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为: 为了更适合于数字图像处理,将该方程表示为离散形式: 另外,拉普拉斯算子还可以表示成... 1.基本理论 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为: 为了更适合于数字图像处理,将该方程表示为离散形式: 另外,拉普拉斯算子还可以表示成...
- 环境:Windows xp+MATLAB 2010b 提及角点检测,就不能忘了最经典的Harris角点检测算法,下面就主要介绍下Harris算法及其matlab实现。 算法介绍: 1)通常情况下,可以将区域内的点分为3类,a.平坦的点,b.边缘上的点,c.角点。 2)若对于这3类点分别求取Ix,... 环境:Windows xp+MATLAB 2010b 提及角点检测,就不能忘了最经典的Harris角点检测算法,下面就主要介绍下Harris算法及其matlab实现。 算法介绍: 1)通常情况下,可以将区域内的点分为3类,a.平坦的点,b.边缘上的点,c.角点。 2)若对于这3类点分别求取Ix,...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签