- 深度学习算法中的可变形卷积神经网络(Deformable Convolutional Networks)引言随着深度学习的快速发展,卷积神经网络(Convolutional Neural Networks, CNN)已成为计算机视觉领域的重要工具。然而,传统的卷积操作具有固定的感受野和权重分布,对于具有非刚性形变的目标和复杂背景下的图像,传统的卷积操作可能会受到限制。为了解决这个问题,可变形... 深度学习算法中的可变形卷积神经网络(Deformable Convolutional Networks)引言随着深度学习的快速发展,卷积神经网络(Convolutional Neural Networks, CNN)已成为计算机视觉领域的重要工具。然而,传统的卷积操作具有固定的感受野和权重分布,对于具有非刚性形变的目标和复杂背景下的图像,传统的卷积操作可能会受到限制。为了解决这个问题,可变形...
- 概述深度学习是近年来兴起的一种机器学习方法,它通过模拟人脑神经网络的结构和功能,实现对大规模数据进行高效处理和学习。卷积神经网络(Convolutional Neural Networks,简称CNN)是深度学习中最重要和最常用的算法之一,它在图像识别、计算机视觉和自然语言处理等领域取得了巨大的成功。卷积神经网络的架构卷积神经网络由多个层次组成,每一层都包含了一组可学习的卷积核(convol... 概述深度学习是近年来兴起的一种机器学习方法,它通过模拟人脑神经网络的结构和功能,实现对大规模数据进行高效处理和学习。卷积神经网络(Convolutional Neural Networks,简称CNN)是深度学习中最重要和最常用的算法之一,它在图像识别、计算机视觉和自然语言处理等领域取得了巨大的成功。卷积神经网络的架构卷积神经网络由多个层次组成,每一层都包含了一组可学习的卷积核(convol...
- 文章和代码已经归档至【Github仓库:https://github.com/timerring/dive-into-AI 】或者公众号【AIShareLab】回复 神经网络基础 也可获取。 CNN 卷积神经网络发展史卷积神经网络(convolutional neural networks, CNN )CNN 是针对图像领域任务提出的神经网络,经历数代人的发展,在2012年之后大部分图像任务... 文章和代码已经归档至【Github仓库:https://github.com/timerring/dive-into-AI 】或者公众号【AIShareLab】回复 神经网络基础 也可获取。 CNN 卷积神经网络发展史卷积神经网络(convolutional neural networks, CNN )CNN 是针对图像领域任务提出的神经网络,经历数代人的发展,在2012年之后大部分图像任务...
- 卷积神经网络(convolutional neural network)是一种前馈神经网络, 广泛应用于图像识别领域。进行图像识别任务时,若使用传统的全连接神经网络,网络的第一层参数会非常多。针对此问题,人们考虑是否能够结合图像识别任务的特点来简化全连接神经网络。 卷积神经网络(convolutional neural network)是一种前馈神经网络, 广泛应用于图像识别领域。进行图像识别任务时,若使用传统的全连接神经网络,网络的第一层参数会非常多。针对此问题,人们考虑是否能够结合图像识别任务的特点来简化全连接神经网络。
- 分享常见的数据结构包括:数组、链表、栈和队列等,以及常见的算法:排序、分治、回溯、递归、贪心、动态规划等。 分享常见的数据结构包括:数组、链表、栈和队列等,以及常见的算法:排序、分治、回溯、递归、贪心、动态规划等。
- 文章和代码以及样例图片等相关资源,已经归档至【Github仓库:digital-image-processing-matlab】或者公众号【AIShareLab】回复 数字图像处理 也可获取。 目的Haar、尺度和小波函数;比较函数wavefast 和函数wavedec2 的执行时间;小波的方向性和边缘检测。 步骤 Haar、尺度和小波函数[Lo_D,Hi_D,Lo_R,Hi_R]=wfil... 文章和代码以及样例图片等相关资源,已经归档至【Github仓库:digital-image-processing-matlab】或者公众号【AIShareLab】回复 数字图像处理 也可获取。 目的Haar、尺度和小波函数;比较函数wavefast 和函数wavedec2 的执行时间;小波的方向性和边缘检测。 步骤 Haar、尺度和小波函数[Lo_D,Hi_D,Lo_R,Hi_R]=wfil...
- 因为 YOLOv1-v3 的作者不再更新 YOLO 框架,所以 Alexey Bochkovskiy 接起了传承 YOLO 的重任。相比于它的前代,YOLOv4 不再是原创性且让人眼前一亮的研究,但是却集成了目标检测领域的各种实用 tricks 和即插即用模块 ,称得上是基于 YOLOv3 框架的各种目标检测 tricks 的集大成者。 本文章不会对原论文进行一一翻译,但是做了系统性的总结和关键部 因为 YOLOv1-v3 的作者不再更新 YOLO 框架,所以 Alexey Bochkovskiy 接起了传承 YOLO 的重任。相比于它的前代,YOLOv4 不再是原创性且让人眼前一亮的研究,但是却集成了目标检测领域的各种实用 tricks 和即插即用模块 ,称得上是基于 YOLOv3 框架的各种目标检测 tricks 的集大成者。 本文章不会对原论文进行一一翻译,但是做了系统性的总结和关键部
- Cascade RCNN 是作者 Zhaowei Cai 于 2018 年发表的论文,算法框架是由一系列不断增加 IoU 阈值的检测器组成,可以逐步的更接近目标的预测。 Cascade RCNN 是作者 Zhaowei Cai 于 2018 年发表的论文,算法框架是由一系列不断增加 IoU 阈值的检测器组成,可以逐步的更接近目标的预测。
- Mask RCNN 是作者 Kaiming He 于 2018 年发表的论文。Mask RCNN 继承自 Faster RCNN 主要有三个改进。 Mask RCNN 是作者 Kaiming He 于 2018 年发表的论文。Mask RCNN 继承自 Faster RCNN 主要有三个改进。
- Retinanet 提出了一种简单但是非常实用的 Focal Loss 焦点损失函数,并且 Loss 设计思想可以推广到其他领域。 Retinanet 提出了一种简单但是非常实用的 Focal Loss 焦点损失函数,并且 Loss 设计思想可以推广到其他领域。
- Retinanet 提出了一种简单但是非常实用的 Focal Loss 焦点损失函数,并且 Loss 设计思想可以推广到其他领域。 Retinanet 提出了一种简单但是非常实用的 Focal Loss 焦点损失函数,并且 Loss 设计思想可以推广到其他领域。
- 残差网络(ResNet)的提出是为了解决深度神经网络的“退化”(优化)问题。ResNet 通过设计残差块结构,调整模型结构,让更深的模型能够有效训练更训练。 残差网络(ResNet)的提出是为了解决深度神经网络的“退化”(优化)问题。ResNet 通过设计残差块结构,调整模型结构,让更深的模型能够有效训练更训练。
- 所谓深度神经网络的优化算法,即用来更新神经网络参数,并使损失函数最小化的算法。优化算法对于深度学习非常重要,网络参数初始化决定模型是否收敛,而优化算法的性能则直接影响模型的训练效率。 所谓深度神经网络的优化算法,即用来更新神经网络参数,并使损失函数最小化的算法。优化算法对于深度学习非常重要,网络参数初始化决定模型是否收敛,而优化算法的性能则直接影响模型的训练效率。
- 反向传播(backward propagation,简称BP)指的是计算神经网络参数梯度的方法。其原理是基于微积分中的链式规则,按相反的顺序从输出层到输入层遍历网络,依次计算每个中间变量和参数的梯度。 反向传播(backward propagation,简称BP)指的是计算神经网络参数梯度的方法。其原理是基于微积分中的链式规则,按相反的顺序从输出层到输入层遍历网络,依次计算每个中间变量和参数的梯度。
- 卷积神经网络 卷积神经网络
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签