- MAT之GUI:GUI的方式创建/训练/仿真/预测神经网络 目录 操作步骤 (0)、打开 (1)、导入数据 (2)创建模型network_Jason_niu (3)设置参数并训练 (4)仿真预测 操作步骤 (0)、打开 &n... MAT之GUI:GUI的方式创建/训练/仿真/预测神经网络 目录 操作步骤 (0)、打开 (1)、导入数据 (2)创建模型network_Jason_niu (3)设置参数并训练 (4)仿真预测 操作步骤 (0)、打开 &n...
- TF:tensorflow框架中常用函数介绍—tf.Variable()和tf.get_variable()用法及其区别 目录 tensorflow框架 tensorflow.Variable()函数 tensorflow.get_variable()函数 tensorflow框架 tf.Variable()和tf... TF:tensorflow框架中常用函数介绍—tf.Variable()和tf.get_variable()用法及其区别 目录 tensorflow框架 tensorflow.Variable()函数 tensorflow.get_variable()函数 tensorflow框架 tf.Variable()和tf...
- ML之分类预测之ElasticNet之PLoR:在二分类数据集上调用Glmnet库训练PLoR模型(T2) 目录 输出结果 设计思路 核心代码 输出结果 设计思路 核心代码 for iStep in range(nSteps): lam = lam * lamMult betaIRLS = l... ML之分类预测之ElasticNet之PLoR:在二分类数据集上调用Glmnet库训练PLoR模型(T2) 目录 输出结果 设计思路 核心代码 输出结果 设计思路 核心代码 for iStep in range(nSteps): lam = lam * lamMult betaIRLS = l...
- EL之Boosting之GB(DTR):利用梯度提升法解决回归(对多变量的数据集+实数值评分预测)问题 目录 输出结果 设计思路 核心代码 输出结果 设计思路 核心代码 xList = []labels = []names = []firstLine = Truefor line in data... EL之Boosting之GB(DTR):利用梯度提升法解决回归(对多变量的数据集+实数值评分预测)问题 目录 输出结果 设计思路 核心代码 输出结果 设计思路 核心代码 xList = []labels = []names = []firstLine = Truefor line in data...
- ML之DT:基于简单回归问题训练决策树(DIY数据集+三种深度的二元DT性能比较) 目录 输出结果 设计思路 核心代码 输出结果 设计思路 核心代码 for i in range(1, len(xPlot)): lhList = list(xPlot[0:i]) rhList = list(xPlot[i:... ML之DT:基于简单回归问题训练决策树(DIY数据集+三种深度的二元DT性能比较) 目录 输出结果 设计思路 核心代码 输出结果 设计思路 核心代码 for i in range(1, len(xPlot)): lhList = list(xPlot[0:i]) rhList = list(xPlot[i:...
- DataScience:深入探讨与分析机器学习中的数据处理之非线性变换—log对数变换、sigmoid/softmax变换 目录 深入探讨与分析机器学习中的数据处理之非线性变换 log对数变换 sigmoid/softmax变换 Sigmoid函数 Softmax函数 相关文章Da... DataScience:深入探讨与分析机器学习中的数据处理之非线性变换—log对数变换、sigmoid/softmax变换 目录 深入探讨与分析机器学习中的数据处理之非线性变换 log对数变换 sigmoid/softmax变换 Sigmoid函数 Softmax函数 相关文章Da...
- DL之AlexNet:AlexNet算法的架构详解、损失函数、网络训练和学习之详细攻略 相关文章Dataset:数据集集合(CV方向数据集)——常见的计算机视觉图像数据集大集合(建议收藏,持续更新)DL之CNN(paper):关于CNN(卷积神经网络)经典论文原文(1950~2018)简介、下载地址大全(非常有价值)之持续更新(吐血整理)DL... DL之AlexNet:AlexNet算法的架构详解、损失函数、网络训练和学习之详细攻略 相关文章Dataset:数据集集合(CV方向数据集)——常见的计算机视觉图像数据集大集合(建议收藏,持续更新)DL之CNN(paper):关于CNN(卷积神经网络)经典论文原文(1950~2018)简介、下载地址大全(非常有价值)之持续更新(吐血整理)DL...
- EL之Bagging(DTR):利用DIY数据集(预留30%数据+两种树深)训练Bagging算法(DTR) 目录 输出结果 设计思路 核心代码 输出结果 1、treeDepth=1 2、treeDepth=5 设计思路 核心代码 for iTrees in range(numTreesMax): ... EL之Bagging(DTR):利用DIY数据集(预留30%数据+两种树深)训练Bagging算法(DTR) 目录 输出结果 设计思路 核心代码 输出结果 1、treeDepth=1 2、treeDepth=5 设计思路 核心代码 for iTrees in range(numTreesMax): ...
- sklearn:sklearn.preprocessing的MinMaxScaler简介、使用方法之详细攻略 目录 MinMaxScaler简介 MinMaxScaler函数解释 MinMaxScaler底层代码 MinMaxScaler的使用方法 1、基础案例 MinMaxScaler简介 MinMaxSca... sklearn:sklearn.preprocessing的MinMaxScaler简介、使用方法之详细攻略 目录 MinMaxScaler简介 MinMaxScaler函数解释 MinMaxScaler底层代码 MinMaxScaler的使用方法 1、基础案例 MinMaxScaler简介 MinMaxSca...
- 请不要随意复制粘贴,请尊重本博主,千辛万苦的总结心血,谢谢您的支持! 建议收藏,一直更新!!!!! 切记:要想学好机器学习,一定要看原汁原味的论文!!!! 目录 1967《Nearest Neighbor Pattern Classification 》 2005《Histograms of Oriented Gradients for Human Detec... 请不要随意复制粘贴,请尊重本博主,千辛万苦的总结心血,谢谢您的支持! 建议收藏,一直更新!!!!! 切记:要想学好机器学习,一定要看原汁原味的论文!!!! 目录 1967《Nearest Neighbor Pattern Classification 》 2005《Histograms of Oriented Gradients for Human Detec...
- ML之回归预测:利用九大类机器学习算法对无人驾驶系统参数(2018年的data,18+2)进行回归预测+评估九种模型性能 相关文章ML之回归预测:利用九大类机器学习算法对自动驾驶系统参数(2018年的data,18+2)进行回归预测+评估九种模型性能 目录 输出记录 1、第一次输出错误记录 2、第二次输出评估模型性能记录 输出记录 1、第一... ML之回归预测:利用九大类机器学习算法对无人驾驶系统参数(2018年的data,18+2)进行回归预测+评估九种模型性能 相关文章ML之回归预测:利用九大类机器学习算法对自动驾驶系统参数(2018年的data,18+2)进行回归预测+评估九种模型性能 目录 输出记录 1、第一次输出错误记录 2、第二次输出评估模型性能记录 输出记录 1、第一...
- Py之yacs:yacs的简介、安装、使用方法之详细攻略 目录 yacs的简介 yacs的安装 yacs的使用方法 1、基础用法 yacs的简介 A simple experiment configuration system for research. yacs是作为一个轻量级库创建的,用于定义和管理系... Py之yacs:yacs的简介、安装、使用方法之详细攻略 目录 yacs的简介 yacs的安装 yacs的使用方法 1、基础用法 yacs的简介 A simple experiment configuration system for research. yacs是作为一个轻量级库创建的,用于定义和管理系...
- Python OpenCV 365 天学习计划,与橡皮擦一起进入图像领域吧。 Python OpenCV 基础知识铺垫Sobel 算子和 Scharr 算子Sobel 算子说明与使用Scharr 算子说明与使用 laplacian 算子橡皮擦的小节 基础知识铺垫 图像梯度是计算图像变化速度的方法,对于图像边缘部分,灰度值如果变化幅度较大,... Python OpenCV 365 天学习计划,与橡皮擦一起进入图像领域吧。 Python OpenCV 基础知识铺垫Sobel 算子和 Scharr 算子Sobel 算子说明与使用Scharr 算子说明与使用 laplacian 算子橡皮擦的小节 基础知识铺垫 图像梯度是计算图像变化速度的方法,对于图像边缘部分,灰度值如果变化幅度较大,...
- ML岗位面试:10.24下午—上海某软件公司(机器学习,上市)电话面试—考察SVM、逻辑回归、降低过拟合、卷积网络基础等 导读:当时电话来的非常快,我刚做完一家公司的笔试,接着来了电话的技术面试。 电话面试考点 博主今天中午15点~17点,有家科技公司的在线笔试,... ML岗位面试:10.24下午—上海某软件公司(机器学习,上市)电话面试—考察SVM、逻辑回归、降低过拟合、卷积网络基础等 导读:当时电话来的非常快,我刚做完一家公司的笔试,接着来了电话的技术面试。 电话面试考点 博主今天中午15点~17点,有家科技公司的在线笔试,...
- ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(2018年的data,18+2)进行回归预测值VS真实值 相关文章ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(2018年的data,18+2)进行回归预测值VS真实值 目录 输出结果 核心代码 输出结果 数据的初步查验:输出回归目标值的差异... ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(2018年的data,18+2)进行回归预测值VS真实值 相关文章ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(2018年的data,18+2)进行回归预测值VS真实值 目录 输出结果 核心代码 输出结果 数据的初步查验:输出回归目标值的差异...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签