- 思想 一般化的跟踪问题可以分解成如下几步: 1. 在帧中,在当前位置附近采样,训练一个回归器。这个回归器能计算一个小窗口采样的响应。 2. 在帧中,在前一帧位置附近采样,用前述回归器判断每个采样的响应。 3. 响应最强的采样作为本帧位置。 循环矩阵表示图像块 在图像中,循环位移操作可以用来近似采样窗口的位移。 训练时,围绕着当前位置进行的一系列位移采样可以用二维... 思想 一般化的跟踪问题可以分解成如下几步: 1. 在帧中,在当前位置附近采样,训练一个回归器。这个回归器能计算一个小窗口采样的响应。 2. 在帧中,在前一帧位置附近采样,用前述回归器判断每个采样的响应。 3. 响应最强的采样作为本帧位置。 循环矩阵表示图像块 在图像中,循环位移操作可以用来近似采样窗口的位移。 训练时,围绕着当前位置进行的一系列位移采样可以用二维...
- pix2pixHD是pix2pix的重要升级,可以实现高分辨率图像生成和图片的语义编辑。对于一个生成对抗网络(GAN),学习的关键就是理解生成器、判别器和损失函数这三部分。pix2pixHD的生成器和判别器都是多尺度的,单一尺度的生成器和判别器的结构和pix2pix是一样的。损失函数由GAN loss、Feature matching loss和Content loss组成。... pix2pixHD是pix2pix的重要升级,可以实现高分辨率图像生成和图片的语义编辑。对于一个生成对抗网络(GAN),学习的关键就是理解生成器、判别器和损失函数这三部分。pix2pixHD的生成器和判别器都是多尺度的,单一尺度的生成器和判别器的结构和pix2pix是一样的。损失函数由GAN loss、Feature matching loss和Content loss组成。...
- 证明relu6能比leaky relu有更好的效果,收敛也更快。 pelee mouse 测试集 map 94.57 训练集 ? yolov3 测试集map 95 训练集99% 卷积层得来的特征: 输入是416*416: 13*13 一个特征点代表32*32像素的图像,检测大目标,最小检测32*32的图像,基于1280是96*96的图... 证明relu6能比leaky relu有更好的效果,收敛也更快。 pelee mouse 测试集 map 94.57 训练集 ? yolov3 测试集map 95 训练集99% 卷积层得来的特征: 输入是416*416: 13*13 一个特征点代表32*32像素的图像,检测大目标,最小检测32*32的图像,基于1280是96*96的图...
- 本文提出一种训练速度更快、参数量更少的卷积神经网络EfficientNetV2。我们采用了训练感知NAS与缩放技术对训练速度与参数量进行联合优化,NAS的搜索空间采用了新的op(比如Fused-MBConv)进行扩充。实验表明:相比其他SOTA方案,所提EfficientNetV2收敛速度更快,模型更小(6.8x)。 在训练过程中,我们可以通过逐步提升图像大... 本文提出一种训练速度更快、参数量更少的卷积神经网络EfficientNetV2。我们采用了训练感知NAS与缩放技术对训练速度与参数量进行联合优化,NAS的搜索空间采用了新的op(比如Fused-MBConv)进行扩充。实验表明:相比其他SOTA方案,所提EfficientNetV2收敛速度更快,模型更小(6.8x)。 在训练过程中,我们可以通过逐步提升图像大...
- 梯度中心化(gradient centralization,GC) 开源实现: https://github.com/Yonghongwei/Gradient-Centralization/blob/31caa1d49e7760e62a64a54eabc8f2403fddf38a/GC_code/Fine-grained_classification/SG... 梯度中心化(gradient centralization,GC) 开源实现: https://github.com/Yonghongwei/Gradient-Centralization/blob/31caa1d49e7760e62a64a54eabc8f2403fddf38a/GC_code/Fine-grained_classification/SG...
- pytorch 多gpu训练: # -*- coding:utf-8 -*- from __future__ import division import datetime import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd pytorch 多gpu训练: # -*- coding:utf-8 -*- from __future__ import division import datetime import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd
- 参考:http://blog.sina.com.cn/s/blog_54d460e40101ec00.html 概率指事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。 对于随机变量X的分布函数F(x),如果存在非负可积函数f(x),使得对任意实数x,有 ... 参考:http://blog.sina.com.cn/s/blog_54d460e40101ec00.html 概率指事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。 对于随机变量X的分布函数F(x),如果存在非负可积函数f(x),使得对任意实数x,有 ...
- Batch Normalization BN的基本思想其实相当直观:因为深层神经网络在做非线性变换前的激活输入值(就是那个x=WU+B,U是输入)随着网络深度加深或者在训练过程中,其分布逐渐发生偏移或者变动,之所以训练收敛慢,一般是整体分布逐渐往非线性函数的取值区间的上下限两端靠近(对于Sigmoid函数来说,意味着激活输入值WU+B是大的负值或正值),所... Batch Normalization BN的基本思想其实相当直观:因为深层神经网络在做非线性变换前的激活输入值(就是那个x=WU+B,U是输入)随着网络深度加深或者在训练过程中,其分布逐渐发生偏移或者变动,之所以训练收敛慢,一般是整体分布逐渐往非线性函数的取值区间的上下限两端靠近(对于Sigmoid函数来说,意味着激活输入值WU+B是大的负值或正值),所...
- 11年it研发经验,从一个会计转行为算法工程师,学过C#,c++,java,android,php,go,js,python,CNN神经网络,四千多篇博文,三千多篇原创,只为与你分享,共同成长,一起进步,关注我,给你分享更多干货知识! 发现menet训练分配gpu代码: cvd ="4,5"# os.environ['CUDA_VISIBLE_DEVICES'].str... 11年it研发经验,从一个会计转行为算法工程师,学过C#,c++,java,android,php,go,js,python,CNN神经网络,四千多篇博文,三千多篇原创,只为与你分享,共同成长,一起进步,关注我,给你分享更多干货知识! 发现menet训练分配gpu代码: cvd ="4,5"# os.environ['CUDA_VISIBLE_DEVICES'].str...
- Softmax 个人理解:在训练的时候,加上角度margin,把预测出来的值减小,往0那里挤压,离标注距离更大,减少训练得分,加大loss,增加训练收敛难度。 不明白的有个问题?减去m后,如果出现负数怎么办? 以下有的内容参考: https://zhuanlan.zhihu.com/p/97475133 softmax... Softmax 个人理解:在训练的时候,加上角度margin,把预测出来的值减小,往0那里挤压,离标注距离更大,减少训练得分,加大loss,增加训练收敛难度。 不明白的有个问题?减去m后,如果出现负数怎么办? 以下有的内容参考: https://zhuanlan.zhihu.com/p/97475133 softmax...
- 0 相关源码 将结合前述知识进行综合实战,以达到所学即所用。文本情感分类这个项目会将分类算法、文本特征提取算法等进行关联,使大家能够对Spark的具体应用有一个整体的感知与了解。 1 项目总体概况 2 数据集概述 数据集 3 数据预处理 4 文本特征提取 官方文档介绍 提取,转换和选择特征 本节介绍了使用特征的算法,大致分为以下几组:提取:从“原始... 0 相关源码 将结合前述知识进行综合实战,以达到所学即所用。文本情感分类这个项目会将分类算法、文本特征提取算法等进行关联,使大家能够对Spark的具体应用有一个整体的感知与了解。 1 项目总体概况 2 数据集概述 数据集 3 数据预处理 4 文本特征提取 官方文档介绍 提取,转换和选择特征 本节介绍了使用特征的算法,大致分为以下几组:提取:从“原始...
- 0 相关源码 1 k-平均算法(k-means clustering)概述 1.1 回顾无监督学习 ◆ 分类、回归都属于监督学习 ◆ 无监督学习是不需要用户去指定标签的 ◆ 而我们看到的分类、回归算法都需要用户输入的训练数据集中给定一个个明确的y值 1.2 k-平均算法与无监督学习 ◆ k-平均算法是无监督学习的一种 ◆ 它不需要人为指定一个因变量,即标... 0 相关源码 1 k-平均算法(k-means clustering)概述 1.1 回顾无监督学习 ◆ 分类、回归都属于监督学习 ◆ 无监督学习是不需要用户去指定标签的 ◆ 而我们看到的分类、回归算法都需要用户输入的训练数据集中给定一个个明确的y值 1.2 k-平均算法与无监督学习 ◆ k-平均算法是无监督学习的一种 ◆ 它不需要人为指定一个因变量,即标...
- 通过讲解PCA算法的原理,使大家明白降维算法的大致原理,以及能够实现怎么样的功能。结合应用降维算法在分类算法使用之前进行预处理的实践,帮助大家体会算法的作用。 0 相关源码 1 PCA算法及原理概述 1.1 何为降维? ◆ 从高维度变为低维度的过程就是降维 ◆ 例如拍照就是把处在三维空间中的人或物从转换到作为二 维平面的 照片中 ◆ 降维有线性的、也有非线性... 通过讲解PCA算法的原理,使大家明白降维算法的大致原理,以及能够实现怎么样的功能。结合应用降维算法在分类算法使用之前进行预处理的实践,帮助大家体会算法的作用。 0 相关源码 1 PCA算法及原理概述 1.1 何为降维? ◆ 从高维度变为低维度的过程就是降维 ◆ 例如拍照就是把处在三维空间中的人或物从转换到作为二 维平面的 照片中 ◆ 降维有线性的、也有非线性...
- 0 系列文章目录 0.1 基于协同过滤算法的电影推荐系统设计(一) - 项目简介 0.2 基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍 ALS是alternating least squares的缩写 , 意为交替最小二乘法,而ALS-WR是alternating-least-squares with weighted-λ -regularizati... 0 系列文章目录 0.1 基于协同过滤算法的电影推荐系统设计(一) - 项目简介 0.2 基于协同过滤算法的电影推荐系统设计(二) - 推荐系统介绍 ALS是alternating least squares的缩写 , 意为交替最小二乘法,而ALS-WR是alternating-least-squares with weighted-λ -regularizati...
- 在WebIDE的terminal里面执行ps -aux > a.txt然后查看a.txt里面是否有WatherOBS,如果没有,在terminal里面执行下面的命令:python /usr/local/bin/Wathcer.py &如果有,则检查下WebIDE的SYNCHRONIZE OBS FILES下面有没有文件没有同步。 在WebIDE的terminal里面执行ps -aux > a.txt然后查看a.txt里面是否有WatherOBS,如果没有,在terminal里面执行下面的命令:python /usr/local/bin/Wathcer.py &如果有,则检查下WebIDE的SYNCHRONIZE OBS FILES下面有没有文件没有同步。
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签