- 什么是机器学习 机器学习是人工智能的一个分支。人工智能的研究是从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,一条自然、清晰的脉络。机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习算法是一类从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测的算法  ... 什么是机器学习 机器学习是人工智能的一个分支。人工智能的研究是从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,一条自然、清晰的脉络。机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习算法是一类从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测的算法  ...
- 力场 力场(Force Field, 常简写为FF)这个物理学名词听起来有点高深, 可如果理解了它的含义你就会觉得这是很自然的一个概念, 没有什么特别之处. 在中学物理或者初等力学中, 研究物体的运动都是从分析其受力出发的, 可以说是以力为基础, 这也是称为力学的原因. 牛顿第二定律直接将物体的受力与其加速度联系起来, 这样只要知道了物体的受力情况, 就能计算出其运动轨迹... 力场 力场(Force Field, 常简写为FF)这个物理学名词听起来有点高深, 可如果理解了它的含义你就会觉得这是很自然的一个概念, 没有什么特别之处. 在中学物理或者初等力学中, 研究物体的运动都是从分析其受力出发的, 可以说是以力为基础, 这也是称为力学的原因. 牛顿第二定律直接将物体的受力与其加速度联系起来, 这样只要知道了物体的受力情况, 就能计算出其运动轨迹...
- 1. bit, byte, word, dword, qword的区别 ? 1 qword = 4 word; 1 dword = 2 word; 1 word = 2 byte; 1 byte = 8 bit; 百度百科的解释: qword 1个二进制位称为1个bit,8个二进制位称为1个Byte,也就是1个字节(8位),2个字节就是1个Word(1个字,1... 1. bit, byte, word, dword, qword的区别 ? 1 qword = 4 word; 1 dword = 2 word; 1 word = 2 byte; 1 byte = 8 bit; 百度百科的解释: qword 1个二进制位称为1个bit,8个二进制位称为1个Byte,也就是1个字节(8位),2个字节就是1个Word(1个字,1...
- Tensorflow |(1)初识Tensorflow Tensorflow |(2)张量的阶和数据类型及张量操作 Tensorflow |(3)变量的的创建、初始化、保存和加载 Tensorflow |(4)名称域、图 和会话 Tensorflow |(5)模型保存与恢复、自定义命令行参数 模型保存与恢复、自定义命令行参数、 在我们训练或者测试过程中,总会遇到... Tensorflow |(1)初识Tensorflow Tensorflow |(2)张量的阶和数据类型及张量操作 Tensorflow |(3)变量的的创建、初始化、保存和加载 Tensorflow |(4)名称域、图 和会话 Tensorflow |(5)模型保存与恢复、自定义命令行参数 模型保存与恢复、自定义命令行参数、 在我们训练或者测试过程中,总会遇到...
- 概念: 机器学习分支之一强化学习,学习通过与环境交互进行,是一种目标导向的方法。 不告知学习者应采用行为,但其行为对于奖励惩罚,从行为后果学习。 机器人避开障碍物案例: 靠近障碍物-10分,远离障碍物+10分。 智能体自己探索获取优良奖励的各自行为,包括如下步骤: 智能体执行行为与环境交互行为执行后,智能体从一个状态转移至另一个状态依据行为获得相应的奖励或惩罚智能... 概念: 机器学习分支之一强化学习,学习通过与环境交互进行,是一种目标导向的方法。 不告知学习者应采用行为,但其行为对于奖励惩罚,从行为后果学习。 机器人避开障碍物案例: 靠近障碍物-10分,远离障碍物+10分。 智能体自己探索获取优良奖励的各自行为,包括如下步骤: 智能体执行行为与环境交互行为执行后,智能体从一个状态转移至另一个状态依据行为获得相应的奖励或惩罚智能...
- 存储器。 1. rom,ram,flash,ddr,sram,dram,mram..列举并解释一下这些名词。 2. 用verilog实现一个深度为16,位宽8bit的单端口SRAM。搭建一个仿真环境,完成初始化,读取,写入的操作。 3. 接第2题,如果同时对一个地址进行读和写操作,会怎样?实际中应该如何处理? 4. 使用单端口SRAM构造一个双端口同步FIFO。 ... 存储器。 1. rom,ram,flash,ddr,sram,dram,mram..列举并解释一下这些名词。 2. 用verilog实现一个深度为16,位宽8bit的单端口SRAM。搭建一个仿真环境,完成初始化,读取,写入的操作。 3. 接第2题,如果同时对一个地址进行读和写操作,会怎样?实际中应该如何处理? 4. 使用单端口SRAM构造一个双端口同步FIFO。 ...
- Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-... Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-...
- 今天给大家介绍2019年12月发表在Nature Machine Intelligence的论文“Prediction of drug combination effects with a minimal set of experiments”,该工作由芬兰分子医学研究所(FIMM)的研究者完成。本研究建立机器学习模型,通过极少量的实验就可以对药物... 今天给大家介绍2019年12月发表在Nature Machine Intelligence的论文“Prediction of drug combination effects with a minimal set of experiments”,该工作由芬兰分子医学研究所(FIMM)的研究者完成。本研究建立机器学习模型,通过极少量的实验就可以对药物...
- 文章目录 线性回归 什么是线性回归 线性回归要解决什么问题 线性回归的一般模型 回归的经验误差 如何使用模型 模型计算 过拟合与欠拟合(underfitting and overfitting) 解决方法 Code(源码实现) 简单线性回归(最小二乘法) 线性回归(梯度下降法) 线性回归 什么是... 文章目录 线性回归 什么是线性回归 线性回归要解决什么问题 线性回归的一般模型 回归的经验误差 如何使用模型 模型计算 过拟合与欠拟合(underfitting and overfitting) 解决方法 Code(源码实现) 简单线性回归(最小二乘法) 线性回归(梯度下降法) 线性回归 什么是...
- 文章目录 支持向量机(SVM) 支持向量基本原理 Code Support Vector Machines: 最小化 *雷区* 训练一个基本的SVM 引入核函数的SVM 调节SVM参数: Soft Margin问题 调节C参数 人脸识别 支持向量机(SVM) %matplotlib inline imp... 文章目录 支持向量机(SVM) 支持向量基本原理 Code Support Vector Machines: 最小化 *雷区* 训练一个基本的SVM 引入核函数的SVM 调节SVM参数: Soft Margin问题 调节C参数 人脸识别 支持向量机(SVM) %matplotlib inline imp...
- 2019年7月,普林斯顿大学的Ian W. Davies学者在Nature上发表了一篇文章——有机合成的数字化。 1 摘要 有机合成基本上是由学术实验室进行的,这些实验室由专门研究某些特定化合物或合成步骤的资助。尽管现代合成方法可以帮助我们获得相当复杂的分子,但是预测单个化学反应的结果依旧存在困难。只有通过智能决策帮我们选择最优的合成步骤(... 2019年7月,普林斯顿大学的Ian W. Davies学者在Nature上发表了一篇文章——有机合成的数字化。 1 摘要 有机合成基本上是由学术实验室进行的,这些实验室由专门研究某些特定化合物或合成步骤的资助。尽管现代合成方法可以帮助我们获得相当复杂的分子,但是预测单个化学反应的结果依旧存在困难。只有通过智能决策帮我们选择最优的合成步骤(...
- 作者 | 朱玉磊 审稿 | 李芬 今天给大家介绍来自加拿大蒙特利尔大学Mila人工智能研究所唐建教授课题组在ICML2020上发表的一篇关于关系抽取的文章。作者利用全局关系图来研究不同句子之间的新关系,并提出了一种新的贝叶斯元学习方法。该方法能够有效的学习关系原型向量的后验分布,并利用图神经网络参数化初始先验分布,并使用随机梯度Langevin动力学... 作者 | 朱玉磊 审稿 | 李芬 今天给大家介绍来自加拿大蒙特利尔大学Mila人工智能研究所唐建教授课题组在ICML2020上发表的一篇关于关系抽取的文章。作者利用全局关系图来研究不同句子之间的新关系,并提出了一种新的贝叶斯元学习方法。该方法能够有效的学习关系原型向量的后验分布,并利用图神经网络参数化初始先验分布,并使用随机梯度Langevin动力学...
- 整个医疗保健链中的利益相关者正在寻求将人工智能(AI)纳入其决策过程。从早期药物开发到临床决策支持系统,已经看到了AI如何提高效率和降低成本的示例。本文讨论了应优先考虑的一些关键因素,以使AI在整个医疗保健价值链中成功集成。特别是,研究者认为对模型的可解释性的关注对于深入了解潜在的生物学机制并指导进一步的研究至关重要。此外,讨论了在任何AI框架中集成各种类型的数据以限制... 整个医疗保健链中的利益相关者正在寻求将人工智能(AI)纳入其决策过程。从早期药物开发到临床决策支持系统,已经看到了AI如何提高效率和降低成本的示例。本文讨论了应优先考虑的一些关键因素,以使AI在整个医疗保健价值链中成功集成。特别是,研究者认为对模型的可解释性的关注对于深入了解潜在的生物学机制并指导进一步的研究至关重要。此外,讨论了在任何AI框架中集成各种类型的数据以限制...
- Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 分类算法之k-近邻 k-近邻算法采用测量不同特征值之间的... Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 分类算法之k-近邻 k-近邻算法采用测量不同特征值之间的...
- 1.简介 深度学习模型通常需要大量有标签数据才能训练出一个优良的分类器。但是,包括医学图像分析在内的一些应用无法满足这种数据要求,因为标注数据需要很多人力劳动。在这些情况下,多任务学习(MTL)可以通过使用来自其它相关学习任务的有用信息来帮助缓解这种数据稀疏问题。 微众银行首席智能官、香港科技大学讲座教授、国际人工智能联合会理事会主席、吴... 1.简介 深度学习模型通常需要大量有标签数据才能训练出一个优良的分类器。但是,包括医学图像分析在内的一些应用无法满足这种数据要求,因为标注数据需要很多人力劳动。在这些情况下,多任务学习(MTL)可以通过使用来自其它相关学习任务的有用信息来帮助缓解这种数据稀疏问题。 微众银行首席智能官、香港科技大学讲座教授、国际人工智能联合会理事会主席、吴...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签