- 机器学习系列之EM算法 我讲EM算法的大概流程主要三部分:需要的预备知识、EM算法详解和对EM算法的改进。 一、EM算法的预备知识 1、极大似然估计 (1)举例说明:经典问题——学生身高问题 我们需要调查我们学校的男生和女生的身高分布。 假设你在校园里随便找了100个男生和100个女生。他们共200个人。将他们按照性别划分为两组,然后先统计抽... 机器学习系列之EM算法 我讲EM算法的大概流程主要三部分:需要的预备知识、EM算法详解和对EM算法的改进。 一、EM算法的预备知识 1、极大似然估计 (1)举例说明:经典问题——学生身高问题 我们需要调查我们学校的男生和女生的身高分布。 假设你在校园里随便找了100个男生和100个女生。他们共200个人。将他们按照性别划分为两组,然后先统计抽...
- 1. 迁移学习 迁移学习也即所谓的有监督预训练(Supervised pre-training),我们通常把它称之为迁移学习。比如你已经有一大堆标注好的人脸年龄分类的图片数据,训练了一个CNN,用于人脸的年龄识别。然后当你遇到新的项目任务是:人脸性别识别,那么这个时候你可以利用已经训练好的年龄识别CNN模型,去掉最后一层,然后其它的网络层参数就直接复制过来,继续... 1. 迁移学习 迁移学习也即所谓的有监督预训练(Supervised pre-training),我们通常把它称之为迁移学习。比如你已经有一大堆标注好的人脸年龄分类的图片数据,训练了一个CNN,用于人脸的年龄识别。然后当你遇到新的项目任务是:人脸性别识别,那么这个时候你可以利用已经训练好的年龄识别CNN模型,去掉最后一层,然后其它的网络层参数就直接复制过来,继续...
- 2019.11.19分v1 v2 https://github.com/jacke121/PeleeNet_Detection_pytorch 有预训练,目标检测: caffe: https://github.com/Robert-JunWang/Pelee https://github.com/yxlijun/Pelee.Pytorch 有预训练... 2019.11.19分v1 v2 https://github.com/jacke121/PeleeNet_Detection_pytorch 有预训练,目标检测: caffe: https://github.com/Robert-JunWang/Pelee https://github.com/yxlijun/Pelee.Pytorch 有预训练...
- pytorch 多GPU训练 pytorch多GPU最终还是没搞通,可用的部分是前向计算,back propagation会出错,当时运行通过,也不太确定是如何通过了的。目前是这样,有机会再来补充 pytorch支持多GPU训练,官方文档(pytorch 0.30)给了一些说明:pytorch数据并行,但遗憾的是给出的说明并不详细。不过说的还是蛮清楚的,建... pytorch 多GPU训练 pytorch多GPU最终还是没搞通,可用的部分是前向计算,back propagation会出错,当时运行通过,也不太确定是如何通过了的。目前是这样,有机会再来补充 pytorch支持多GPU训练,官方文档(pytorch 0.30)给了一些说明:pytorch数据并行,但遗憾的是给出的说明并不详细。不过说的还是蛮清楚的,建...
- 通俗理解谱聚类算法 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法。 将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。 "带权无向图"这个词太学术了,我们换一种叫法,即:相似度矩阵。 假设我们有一个相似度矩阵,矩阵中存的是所有对象的两两相似度。 ... 通俗理解谱聚类算法 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法。 将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。 "带权无向图"这个词太学术了,我们换一种叫法,即:相似度矩阵。 假设我们有一个相似度矩阵,矩阵中存的是所有对象的两两相似度。 ...
- 【机器学习】逻辑回归(Logistic Regression) 注:最近开始学习《人工智能》选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索。 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准)。 1. 什么是逻辑回归? 许... 【机器学习】逻辑回归(Logistic Regression) 注:最近开始学习《人工智能》选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索。 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准)。 1. 什么是逻辑回归? 许...
- 动态slimmable网络:高性能的网络轻量化方法!对比slimmable涨点5.9% 论文链接: https://arxiv.org/abs/2103.13258 代码: https://github.com/changlin31/DS-Net 一、研究动机 动态剪枝算法及其问题 动态网络为每... 动态slimmable网络:高性能的网络轻量化方法!对比slimmable涨点5.9% 论文链接: https://arxiv.org/abs/2103.13258 代码: https://github.com/changlin31/DS-Net 一、研究动机 动态剪枝算法及其问题 动态网络为每...
- 人工智能研究网 www.studyai.cn 下面的代码通过计算图像中给定区域的方向梯度直方图来估计图像的旋转角度 主要内容包括: 一、计算局部图像块方向梯度直方图的函数 二、把给定图像按照给定的角度旋转 三、如何利用旋转后的图像的方向梯度直方图和原图像的方向梯度直方图来估计旋转角度 四、绘制方向梯度直方图 计算效果如下次: 主要代码如下: ... 人工智能研究网 www.studyai.cn 下面的代码通过计算图像中给定区域的方向梯度直方图来估计图像的旋转角度 主要内容包括: 一、计算局部图像块方向梯度直方图的函数 二、把给定图像按照给定的角度旋转 三、如何利用旋转后的图像的方向梯度直方图和原图像的方向梯度直方图来估计旋转角度 四、绘制方向梯度直方图 计算效果如下次: 主要代码如下: ...
- 随机森林原理 2017-08-06 18:56 80人阅读 评论(0) 收藏 举报 分类: 机器学习(17) 转载自:http://www.zilhua.com/629.html &nb... 随机森林原理 2017-08-06 18:56 80人阅读 评论(0) 收藏 举报 分类: 机器学习(17) 转载自:http://www.zilhua.com/629.html &nb...
- 把Cross Entropy梯度分布拉平 来源:PaperWeekly 单阶段物体检测(One-stage Object Detection)方法在模型训练过程中始终面临着样本分布严重不均衡的问题,来自香港中文大学的研究者们在论文 Gradient Harmonized Single-stage Detector提出了一个新的视角——梯度分布上看... 把Cross Entropy梯度分布拉平 来源:PaperWeekly 单阶段物体检测(One-stage Object Detection)方法在模型训练过程中始终面临着样本分布严重不均衡的问题,来自香港中文大学的研究者们在论文 Gradient Harmonized Single-stage Detector提出了一个新的视角——梯度分布上看...
- torch yolov3梯度发散 原因: 每次计算之前zero_grad,梯度清0,如果没有这句 梯度会累加,产生一个很大的值,后面会梯度发散。 imgs = Variable(imgs.type(Tensor)) targets = Variable(targets.type(Tensor), requires_grad=False) optimizer.zero_gra... torch yolov3梯度发散 原因: 每次计算之前zero_grad,梯度清0,如果没有这句 梯度会累加,产生一个很大的值,后面会梯度发散。 imgs = Variable(imgs.type(Tensor)) targets = Variable(targets.type(Tensor), requires_grad=False) optimizer.zero_gra...
- https://github.com/implus/GFocal 最小的模型,247m,时间100ms一张图片 ModelMulti-scale trainingAP (minival)AP (test-dev)FPSLinkGFL_R_50_FPN_1xNo40.240.319.4GoogleGFL_R_50_FPN_2xYes42.843.119.4G... https://github.com/implus/GFocal 最小的模型,247m,时间100ms一张图片 ModelMulti-scale trainingAP (minival)AP (test-dev)FPSLinkGFL_R_50_FPN_1xNo40.240.319.4GoogleGFL_R_50_FPN_2xYes42.843.119.4G...
- 北大、字节跳动等利用增量学习提出超像素分割模型LNSNet 模型52k,cpu版,运行一张图片需要2.4s,速度挺慢。 网络结构值得学习。 因此为保证超像素分割既可以更好的借助深度学习进行有效的特征提取,又可以同时兼顾传统超像素分割方法高效、灵活、迁移性强的特点,本研究从持续学习的视角看待超像素分割问题,并提出了一种新型的超像素分割模型可以更好的支持无监... 北大、字节跳动等利用增量学习提出超像素分割模型LNSNet 模型52k,cpu版,运行一张图片需要2.4s,速度挺慢。 网络结构值得学习。 因此为保证超像素分割既可以更好的借助深度学习进行有效的特征提取,又可以同时兼顾传统超像素分割方法高效、灵活、迁移性强的特点,本研究从持续学习的视角看待超像素分割问题,并提出了一种新型的超像素分割模型可以更好的支持无监...
- 如果您想下采样/常规调整大小,您应该使用interpolate()方法,这里的上采样方法已经不推荐使用了。 Upsample CLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None) 上采样一个给定的多通道的 1D (temporal,如向... 如果您想下采样/常规调整大小,您应该使用interpolate()方法,这里的上采样方法已经不推荐使用了。 Upsample CLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None) 上采样一个给定的多通道的 1D (temporal,如向...
- VariFocalNet | IoU-aware同V-Focal Loss全面提升密集目标检测(附YOLOV5测试代码) 观察到,核心网络是resnet50,resnet101 如果推理报错,参考: https://github.com/hyz-xmaster/VarifocalNet/issues/1 准确地对大量候选检测器进行排名是高性能密集目标检测器的关键。尽管... VariFocalNet | IoU-aware同V-Focal Loss全面提升密集目标检测(附YOLOV5测试代码) 观察到,核心网络是resnet50,resnet101 如果推理报错,参考: https://github.com/hyz-xmaster/VarifocalNet/issues/1 准确地对大量候选检测器进行排名是高性能密集目标检测器的关键。尽管...
上滑加载中