- 目录 目录前文列表伯努利分布二项分布 前文列表 计数原理 组合与排列 统计与分布之高斯分布 统计与分布之泊松分布 伯努利分布 伯努利分布(Bernoulli Distribution),是一种离散分布,又称为 “0-1 分布” 或 “两点分布”。例如抛硬币的正面或反面,物品有缺陷或没缺陷,病人康复或未康复,此类满足「只有两种可能,试... 目录 目录前文列表伯努利分布二项分布 前文列表 计数原理 组合与排列 统计与分布之高斯分布 统计与分布之泊松分布 伯努利分布 伯努利分布(Bernoulli Distribution),是一种离散分布,又称为 “0-1 分布” 或 “两点分布”。例如抛硬币的正面或反面,物品有缺陷或没缺陷,病人康复或未康复,此类满足「只有两种可能,试...
- 问题描述 求出区间[a,b]中所有整数的质因数分解。 输入格式 输入两个整数a,b。 输出格式 每行输出一个数的分解,形如k=a1 * a2 * a3…(a1<=a2<=a3…,k也是从小到大的) 程序清单 #include <iostream> #include <math.h> using namespace std... 问题描述 求出区间[a,b]中所有整数的质因数分解。 输入格式 输入两个整数a,b。 输出格式 每行输出一个数的分解,形如k=a1 * a2 * a3…(a1<=a2<=a3…,k也是从小到大的) 程序清单 #include <iostream> #include <math.h> using namespace std...
- Google如何对图片搜索结果进行排名 机器学习模型对图像搜索结果进行排名 使用机器学习模型对图像搜索结果进行排名的优势 索引引擎 对图像搜索结果进行排名的过程背后的排名引擎 可用于图像和登录页面以对图像搜索结果进行排名的功能 从图像中提取的特征 从着陆页提取的功能 从着陆页提取的功能描述着陆页中图像的上下文 有关登陆页面上图像上下文的更多详细信... Google如何对图片搜索结果进行排名 机器学习模型对图像搜索结果进行排名 使用机器学习模型对图像搜索结果进行排名的优势 索引引擎 对图像搜索结果进行排名的过程背后的排名引擎 可用于图像和登录页面以对图像搜索结果进行排名的功能 从图像中提取的特征 从着陆页提取的功能 从着陆页提取的功能描述着陆页中图像的上下文 有关登陆页面上图像上下文的更多详细信...
- 在深度学习过程中,避免不了使用梯度下降算法。但是对于“非凸问题”,训练得到的结果往往可能陷入局部极小值,而非全局最优解。那么这里就以Himmelblau 函数为例,探究待优化参数的初始值对梯度下降方向的影响,从而得到不同的局部极小值。 首先介绍一下Himmelblau 函数: 下图 为 Himmelblau 函数的等高线,大致可以看出,它共有 4 个局部极小值点,并且... 在深度学习过程中,避免不了使用梯度下降算法。但是对于“非凸问题”,训练得到的结果往往可能陷入局部极小值,而非全局最优解。那么这里就以Himmelblau 函数为例,探究待优化参数的初始值对梯度下降方向的影响,从而得到不同的局部极小值。 首先介绍一下Himmelblau 函数: 下图 为 Himmelblau 函数的等高线,大致可以看出,它共有 4 个局部极小值点,并且...
- 问题描述 回形取数就是沿矩阵的边取数,若当前方向上无数可取或已经取过,则左转90度。一开始位于矩阵左上角,方向向下。 输入格式 输入第一行是两个不超过200的正整数m, n,表示矩阵的行和列。接下来m行每行n个整数,表示这个矩阵。 输出格式 输出只有一行,共 m × n m \times n m×n个数,为输入矩阵回形取数得到的结果。数之间用一个空格分隔,行末不要有多... 问题描述 回形取数就是沿矩阵的边取数,若当前方向上无数可取或已经取过,则左转90度。一开始位于矩阵左上角,方向向下。 输入格式 输入第一行是两个不超过200的正整数m, n,表示矩阵的行和列。接下来m行每行n个整数,表示这个矩阵。 输出格式 输出只有一行,共 m × n m \times n m×n个数,为输入矩阵回形取数得到的结果。数之间用一个空格分隔,行末不要有多...
- 深度学习笔记:欠拟合、过拟合 防止过拟合(一):正则化 防止过拟合(二):Dropout 数据增强(Date Augmentation) 增加数据集大小是解决过拟合最重要的途径。但是收集样本数据和标注往往是代价昂贵的,在有限的数据集上,通过数据增强技术可以增加训练的样本数量,获得一定程度上的性能提升。 **数据增强(Data Augmentation)**是指在维持... 深度学习笔记:欠拟合、过拟合 防止过拟合(一):正则化 防止过拟合(二):Dropout 数据增强(Date Augmentation) 增加数据集大小是解决过拟合最重要的途径。但是收集样本数据和标注往往是代价昂贵的,在有限的数据集上,通过数据增强技术可以增加训练的样本数量,获得一定程度上的性能提升。 **数据增强(Data Augmentation)**是指在维持...
- 问题描述 给定两个仅由大写字母或小写字母组成的字符串(长度介于1到10之间),它们之间的关系是以下4中情况之一: 1:两个字符串长度不等。比如 Beijing 和 Hebei 2:两个字符串不仅长度相等,而且相应位置上的字符完全一致(区分大小写),比如 Beijing 和 Beijing 3:两个字符串长度相等,相应位置上的字符仅在不区分大小写的前提下才能... 问题描述 给定两个仅由大写字母或小写字母组成的字符串(长度介于1到10之间),它们之间的关系是以下4中情况之一: 1:两个字符串长度不等。比如 Beijing 和 Hebei 2:两个字符串不仅长度相等,而且相应位置上的字符完全一致(区分大小写),比如 Beijing 和 Beijing 3:两个字符串长度相等,相应位置上的字符仅在不区分大小写的前提下才能...
- 对于给定函数:y(w)=aw^2+bw+c 数学求导得:dy/dw=2aw+b 那么,(a,b,c,w)=(1,2,3,4)处的导数,dy/dw=2 * 1 *4 + 2=10 而在Tensorflow2.0中,梯度可以自动求取。具体代码如下: import tensorflow as tf a=tf.constant(1.) b=tf.constant(2.) c... 对于给定函数:y(w)=aw^2+bw+c 数学求导得:dy/dw=2aw+b 那么,(a,b,c,w)=(1,2,3,4)处的导数,dy/dw=2 * 1 *4 + 2=10 而在Tensorflow2.0中,梯度可以自动求取。具体代码如下: import tensorflow as tf a=tf.constant(1.) b=tf.constant(2.) c...
- 问题描述 回文串,是一种特殊的字符串,它从左往右读和从右往左读是一样的。小龙龙认为回文串才是完美的。现在给你一个串,它不一定是回文的,请你计算最少的交换次数使得该串变成一个完美的回文串。 交换的定义是:交换两个相邻的字符 例如mamad 第一次交换 ad : mamda 第二次交换 md : madma 第三次交换 ma : madam (回文!完... 问题描述 回文串,是一种特殊的字符串,它从左往右读和从右往左读是一样的。小龙龙认为回文串才是完美的。现在给你一个串,它不一定是回文的,请你计算最少的交换次数使得该串变成一个完美的回文串。 交换的定义是:交换两个相邻的字符 例如mamad 第一次交换 ad : mamda 第二次交换 md : madma 第三次交换 ma : madam (回文!完...
- 前言: 本专栏在保证内容完整性的基础上,力求简洁,旨在让初学者能够更快地、高效地入门TensorFlow2 深度学习框架。如果觉得本专栏对您有帮助的话,可以给一个小小的三连,各位的支持将是我创作的最大动力! 系列文章汇总:TensorFlow2 入门指南 Github项目地址:https://github.com/Keyird/TensorFlow2-for-beg... 前言: 本专栏在保证内容完整性的基础上,力求简洁,旨在让初学者能够更快地、高效地入门TensorFlow2 深度学习框架。如果觉得本专栏对您有帮助的话,可以给一个小小的三连,各位的支持将是我创作的最大动力! 系列文章汇总:TensorFlow2 入门指南 Github项目地址:https://github.com/Keyird/TensorFlow2-for-beg...
- 前言: 本专栏在保证内容完整性的基础上,力求简洁,旨在让初学者能够更快地、高效地入门TensorFlow2 深度学习框架。如果觉得本专栏对您有帮助的话,可以给一个小小的三连,各位的支持将是我创作的最大动力! 文章目录 一、分类问题简介 二、手写数字识别简介 三、面对初学者的实现方法 (1)导入库 (2)数据集准备 (3)模型搭建 (4)模... 前言: 本专栏在保证内容完整性的基础上,力求简洁,旨在让初学者能够更快地、高效地入门TensorFlow2 深度学习框架。如果觉得本专栏对您有帮助的话,可以给一个小小的三连,各位的支持将是我创作的最大动力! 文章目录 一、分类问题简介 二、手写数字识别简介 三、面对初学者的实现方法 (1)导入库 (2)数据集准备 (3)模型搭建 (4)模...
- 目录 1、训练过程(创建分类器) 1.1、目标对象数据样本 1.2、目标对象分类器配置 1.3、目标对象分类器训练 1.4、目标对象分类器输出和评估 2、分类与识别 目标对象分类是指将未知样品的形状、颜色、纹理等显著特征组成的向量与代表某一类样本的特征向量(Feature Vector)进行比较,根据其匹配程度识别未知样品类别归属的过程。 目标对象分类是机器... 目录 1、训练过程(创建分类器) 1.1、目标对象数据样本 1.2、目标对象分类器配置 1.3、目标对象分类器训练 1.4、目标对象分类器输出和评估 2、分类与识别 目标对象分类是指将未知样品的形状、颜色、纹理等显著特征组成的向量与代表某一类样本的特征向量(Feature Vector)进行比较,根据其匹配程度识别未知样品类别归属的过程。 目标对象分类是机器...
- 如果之前的训练任务为test-12345,模型文件job.pkl存放在output目录下。获取方法如下:import moxing as mox import os from naie.context import Context mox.file.copy(os.path.join(Context.get_job_path("test-12345"), "output/job... 如果之前的训练任务为test-12345,模型文件job.pkl存放在output目录下。获取方法如下:import moxing as mox import os from naie.context import Context mox.file.copy(os.path.join(Context.get_job_path("test-12345"), "output/job...
- NAIE平台在比赛期间提供免费的资源,比赛结束之后如果需要继续使用平台的话会计费,所以比赛结束之后需要停止运行中的任务,包括:训练任务、特征工程、WebIDE、Notebook。1、训练任务进入项目,点击上方“模型训练”菜单,可以看到算法列表,每个算法都要进去查看下是否有运行中的任务,点击进入一个算法,可以看到任务列表,现在RUNNING状态的任务,见下图红框,然后停止任务。2... NAIE平台在比赛期间提供免费的资源,比赛结束之后如果需要继续使用平台的话会计费,所以比赛结束之后需要停止运行中的任务,包括:训练任务、特征工程、WebIDE、Notebook。1、训练任务进入项目,点击上方“模型训练”菜单,可以看到算法列表,每个算法都要进去查看下是否有运行中的任务,点击进入一个算法,可以看到任务列表,现在RUNNING状态的任务,见下图红框,然后停止任务。2...
- 目录 图像梯度Sobel滤波器 图像梯度 图像梯度计算的是图像变化的速度。对于图像的边缘部分,其灰度值变化较大,梯度值也较大;相反,对于图像中比较平滑的部分,其灰度值变化较小,相应的梯度值也较小。一般情况下,图像的梯度计算是图像的边缘信息。 其实梯度就是导数,但是图像梯度一般通过计算像素值的差来得到梯度的近似值,也可以说是近似导数。该导数可以用微积分来... 目录 图像梯度Sobel滤波器 图像梯度 图像梯度计算的是图像变化的速度。对于图像的边缘部分,其灰度值变化较大,梯度值也较大;相反,对于图像中比较平滑的部分,其灰度值变化较小,相应的梯度值也较小。一般情况下,图像的梯度计算是图像的边缘信息。 其实梯度就是导数,但是图像梯度一般通过计算像素值的差来得到梯度的近似值,也可以说是近似导数。该导数可以用微积分来...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
“智能运维新视野”系列直播 —— 云监控技术深度实践
2025/08/29 周五 15:00-16:00
星璇 华为云监控产品经理
本期直播深度解析全栈监控技术实践,揭秘华为云、头部企业如何通过智能监控实现业务零中断,分享高可用系统背后的“鹰眼系统”。即刻预约,解锁数字化转型的运维密码!
回顾中
热门标签