- 当数据存在多分布或类别分布不均衡的时候,最小化平均损失会牺牲掉小类样本以达到在整体样本集上的损失最小;当数据存在噪音或外点的时候,最大损失对噪音非常的敏感,学习到的分类边界跟Bayes最优边界相差很大;当采取损失最为聚合损失的时候(如k=10),可以更好的保护小类样本,并且其相对于最大损失而言对噪音更加鲁棒。 当数据存在多分布或类别分布不均衡的时候,最小化平均损失会牺牲掉小类样本以达到在整体样本集上的损失最小;当数据存在噪音或外点的时候,最大损失对噪音非常的敏感,学习到的分类边界跟Bayes最优边界相差很大;当采取损失最为聚合损失的时候(如k=10),可以更好的保护小类样本,并且其相对于最大损失而言对噪音更加鲁棒。
- 本次教程将带领大家完整的走一遍比赛流程。经过前面一系列教程,相信大家对飞桨已经熟悉了,但是我们不能一直纸上谈兵,所以本次就带领大家完成一个实际的比赛项目。 本次教程将带领大家完整的走一遍比赛流程。经过前面一系列教程,相信大家对飞桨已经熟悉了,但是我们不能一直纸上谈兵,所以本次就带领大家完成一个实际的比赛项目。
- 基于 Dropout 的这种特殊方式对网络带来的随机性,研究员们提出了 R-Drop 来进一步对(子模型)网络的输出预测进行了正则约束。 基于 Dropout 的这种特殊方式对网络带来的随机性,研究员们提出了 R-Drop 来进一步对(子模型)网络的输出预测进行了正则约束。
- 当感光元件像素的空间频率与影像中条纹的空间频率接近时,可能产生一种新的波浪形的干扰图案,即所谓的摩尔纹。 当感光元件像素的空间频率与影像中条纹的空间频率接近时,可能产生一种新的波浪形的干扰图案,即所谓的摩尔纹。
- 目标检测模型的基础知识包括 anchor box、iou、focal loss、nms算法等内容。⽬标检测算法通常会在输⼊图像中采样⼤量的区域,然后判断这些区域中是否包含我们感兴趣的⽬标。 目标检测模型的基础知识包括 anchor box、iou、focal loss、nms算法等内容。⽬标检测算法通常会在输⼊图像中采样⼤量的区域,然后判断这些区域中是否包含我们感兴趣的⽬标。
- 推荐系统[三]:粗排算法常用模型汇总(集合选择和精准预估),技术发展历史(向量內积,Wide&Deep等模型)以及前沿技术 推荐系统[三]:粗排算法常用模型汇总(集合选择和精准预估),技术发展历史(向量內积,Wide&Deep等模型)以及前沿技术
- 推荐系统[二]:召回算法超详细讲解[召回模型演化过程、召回模型主流常见算法(DeepMF_TDM_Airbnb Embedding_Item2vec等)、召回路径简介、多路召回融合].md 推荐系统[二]:召回算法超详细讲解[召回模型演化过程、召回模型主流常见算法(DeepMF_TDM_Airbnb Embedding_Item2vec等)、召回路径简介、多路召回融合].md
- 为大家详细介绍下图像分类比赛的完整流程。为大家提供从数据处理,到模型搭建,损失函数、优化算法选择,学习率调整策略到模型训练,以及推理输出一条龙服务。 为大家详细介绍下图像分类比赛的完整流程。为大家提供从数据处理,到模型搭建,损失函数、优化算法选择,学习率调整策略到模型训练,以及推理输出一条龙服务。
- 这个融合模型是我在打比赛的时候随手搞出来的。 这个数据集实际上没有难度,类间分布较为均匀,属于典型的细粒度分类问题。 解题思路就是找一个足够强悍的模型,再加上预训练模型,耐心调参,就会有一个不错的名次。 这个融合模型是我在打比赛的时候随手搞出来的。 这个数据集实际上没有难度,类间分布较为均匀,属于典型的细粒度分类问题。 解题思路就是找一个足够强悍的模型,再加上预训练模型,耐心调参,就会有一个不错的名次。
- 半精度(也被称为FP16)对比高精度的FP32与FP64降低了神经网络的显存占用,使得我们可以训练部署更大的网络,并且FP16在数据转换时比FP32或者FP64更节省时间。 半精度(也被称为FP16)对比高精度的FP32与FP64降低了神经网络的显存占用,使得我们可以训练部署更大的网络,并且FP16在数据转换时比FP32或者FP64更节省时间。
- 类似Inception分支和ASPP模块,提出使用不同卷积核的多分支网络。与类似模块大部分使用不同空洞卷积核的是PyConv提出使用分组卷积的思想 类似Inception分支和ASPP模块,提出使用不同卷积核的多分支网络。与类似模块大部分使用不同空洞卷积核的是PyConv提出使用分组卷积的思想
- 这里写了一个项目再去好好看这两种数据增强方式。最开始在目标检测中,未对数据的标签部分进行思考,对于图像的处理,大家是可以很好理解的,因为非常直观,但是通过阅读相关论文,查看一些相关的资料发现一些新的有趣的东西。接下来为大家讲解一下这两种数据增强方式。 这里写了一个项目再去好好看这两种数据增强方式。最开始在目标检测中,未对数据的标签部分进行思考,对于图像的处理,大家是可以很好理解的,因为非常直观,但是通过阅读相关论文,查看一些相关的资料发现一些新的有趣的东西。接下来为大家讲解一下这两种数据增强方式。
- 作者考虑了CNN网络的各个结构,认为卷积层本身是具有平移不变性的,而池化层破坏了平移不变性。作者认为可以借鉴信号处理中反锯齿算法的设计,即在信号下采样之前进行低通滤波(也就是图像模糊),缓解池化操作带来的对平移不变性的破坏。 作者考虑了CNN网络的各个结构,认为卷积层本身是具有平移不变性的,而池化层破坏了平移不变性。作者认为可以借鉴信号处理中反锯齿算法的设计,即在信号下采样之前进行低通滤波(也就是图像模糊),缓解池化操作带来的对平移不变性的破坏。
- 文本匹配任务在自然语言处理中是非常重要的基础任务之一,一般研究两段文本之间的关系。有很多应用场景;如信息检索、问答系统、智能对话、文本鉴别、智能推荐、文本数据去重、文本相似度计算、自然语言推理、问答系统、信息检索等,但文本匹配或者说自然语言处理仍然存在很多难点。这些自然语言处理任务在很大程度上都可以抽象成文本匹配问题,比如信息检索可以归结为搜索词和文档资源的匹配,问答系统可以归结为问题和候选答案的 文本匹配任务在自然语言处理中是非常重要的基础任务之一,一般研究两段文本之间的关系。有很多应用场景;如信息检索、问答系统、智能对话、文本鉴别、智能推荐、文本数据去重、文本相似度计算、自然语言推理、问答系统、信息检索等,但文本匹配或者说自然语言处理仍然存在很多难点。这些自然语言处理任务在很大程度上都可以抽象成文本匹配问题,比如信息检索可以归结为搜索词和文档资源的匹配,问答系统可以归结为问题和候选答案的
- 文本匹配任务在自然语言处理中是非常重要的基础任务之一,一般研究两段文本之间的关系。有很多应用场景;如信息检索、问答系统、智能对话、文本鉴别、智能推荐、文本数据去重、文本相似度计算、自然语言推理、问答系统、信息检索等,但文本匹配或者说自然语言处理仍然存在很多难点。这些自然语言处理任务在很大程度上都可以抽象成文本匹配问题,比如信息检索可以归结为搜索词和文档资源的匹配,问答系统可以归结为问题和候选答案的 文本匹配任务在自然语言处理中是非常重要的基础任务之一,一般研究两段文本之间的关系。有很多应用场景;如信息检索、问答系统、智能对话、文本鉴别、智能推荐、文本数据去重、文本相似度计算、自然语言推理、问答系统、信息检索等,但文本匹配或者说自然语言处理仍然存在很多难点。这些自然语言处理任务在很大程度上都可以抽象成文本匹配问题,比如信息检索可以归结为搜索词和文档资源的匹配,问答系统可以归结为问题和候选答案的
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签