- sklearn.preprocessing.StandardScaler函数入门在机器学习中,数据预处理是一个至关重要的步骤。而常常使用到的数据预处理方法之一就是特征缩放。特征缩放是将不同特征的取值范围映射到相同的尺度上,以确保不同特征对模型的影响具有相同的权重。 在scikit-learn库的preprocessing模块中,有一个非常常用的函数StandardScaler,它可以... sklearn.preprocessing.StandardScaler函数入门在机器学习中,数据预处理是一个至关重要的步骤。而常常使用到的数据预处理方法之一就是特征缩放。特征缩放是将不同特征的取值范围映射到相同的尺度上,以确保不同特征对模型的影响具有相同的权重。 在scikit-learn库的preprocessing模块中,有一个非常常用的函数StandardScaler,它可以...
- 解决 "WARNING: tensorflow: From" 错误信息在使用 TensorFlow 进行深度学习任务时,经常会遇到一些警告信息,其中之一就是 "WARNING:tensorflow:From"。这个警告信息通常出现在使用 tensorflow.contrib.learn.python.learn 模块中的 read_data_sets 函数时。本篇博客将介绍如... 解决 "WARNING: tensorflow: From" 错误信息在使用 TensorFlow 进行深度学习任务时,经常会遇到一些警告信息,其中之一就是 "WARNING:tensorflow:From"。这个警告信息通常出现在使用 tensorflow.contrib.learn.python.learn 模块中的 read_data_sets 函数时。本篇博客将介绍如...
- 不用任何公开参考资料,估算今年新生儿出生数量解答:1)采用两层模型(人群画像人群转化):新生儿出生数=Σ各年龄层育龄女性数量各年龄层生育比率2)从数字到数字:如果有前几年新生儿出生数量数据,建立时间序列模型(需要考虑到二胎放开的突变事件)进行预测3)找先兆指标,如婴儿类用品的新增活跃用户数量X表示新生儿家庭用户。Xn/新生儿n为该年新生儿家庭用户的转化率,如X2007/新生儿2007位为20... 不用任何公开参考资料,估算今年新生儿出生数量解答:1)采用两层模型(人群画像人群转化):新生儿出生数=Σ各年龄层育龄女性数量各年龄层生育比率2)从数字到数字:如果有前几年新生儿出生数量数据,建立时间序列模型(需要考虑到二胎放开的突变事件)进行预测3)找先兆指标,如婴儿类用品的新增活跃用户数量X表示新生儿家庭用户。Xn/新生儿n为该年新生儿家庭用户的转化率,如X2007/新生儿2007位为20...
- 解决Fit Failed Warning: Estimator fit failed. The score on this train-test partition for these param在使用机器学习算法进行建模和训练时,我们有时会遇到一些警告和错误提示。其中之一是"Fit Failed Warning: Estimator fit failed. The score on thi... 解决Fit Failed Warning: Estimator fit failed. The score on this train-test partition for these param在使用机器学习算法进行建模和训练时,我们有时会遇到一些警告和错误提示。其中之一是"Fit Failed Warning: Estimator fit failed. The score on thi...
- 解决ValueError: Expected 2D array, got 1D array instead: Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample在使... 解决ValueError: Expected 2D array, got 1D array instead: Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample在使...
- 1. 背景内容Baichuan2-7B 是由百川智能开发的一个开源可商用的大规模预训练语言模型,基于 Transformer 结构,在大约 1.2 万亿 tokens 上训练的 70 亿参数模型,支持中英双语,上下文窗口长度为 4096。本文主要介绍如何在单机8卡Snt9B裸金属服务器中对该模型进行微调训练。2. 环境准备模型支持的当前版本和主要库依赖如下表所示。python3.7torch... 1. 背景内容Baichuan2-7B 是由百川智能开发的一个开源可商用的大规模预训练语言模型,基于 Transformer 结构,在大约 1.2 万亿 tokens 上训练的 70 亿参数模型,支持中英双语,上下文窗口长度为 4096。本文主要介绍如何在单机8卡Snt9B裸金属服务器中对该模型进行微调训练。2. 环境准备模型支持的当前版本和主要库依赖如下表所示。python3.7torch...
- 解决PackagesNotFoundError: The following packages are not available from current channels "nyoka"介绍在使用Python进行数据科学和机器学习开发的过程中,我们经常会依赖各种第三方库和包。然而,有时候我们在安装某个包时可能会遇到PackagesNotFoundError的错误,提示某些包在当前... 解决PackagesNotFoundError: The following packages are not available from current channels "nyoka"介绍在使用Python进行数据科学和机器学习开发的过程中,我们经常会依赖各种第三方库和包。然而,有时候我们在安装某个包时可能会遇到PackagesNotFoundError的错误,提示某些包在当前...
- MapillaryVistas数据集入门在计算机视觉领域,数据集是进行算法研究和模型训练的重要基础。本文将介绍MapillaryVistas数据集,该数据集是一个大规模的街景图像数据集,可以用于场景理解、语义分割等任务。什么是MapillaryVistas数据集?MapillaryVistas数据集由Mapillary公司收集和发布,是一个全球性的街景图像数据集。该数据集包含了来自全球各地的... MapillaryVistas数据集入门在计算机视觉领域,数据集是进行算法研究和模型训练的重要基础。本文将介绍MapillaryVistas数据集,该数据集是一个大规模的街景图像数据集,可以用于场景理解、语义分割等任务。什么是MapillaryVistas数据集?MapillaryVistas数据集由Mapillary公司收集和发布,是一个全球性的街景图像数据集。该数据集包含了来自全球各地的...
- 解决 ValueError: feature_names mismatch training data did not have the following fields在机器学习中,有时候我们可能会遇到 ValueError: feature_names mismatch training data did not have the following fields 的错误。这个错... 解决 ValueError: feature_names mismatch training data did not have the following fields在机器学习中,有时候我们可能会遇到 ValueError: feature_names mismatch training data did not have the following fields 的错误。这个错...
- Gibbs Gauss采样入门引言Gibbs采样是一种马尔可夫链蒙特卡洛(MCMC)方法,用于从一个高维的概率分布中采样。在多元统计学和机器学习领域广泛应用。本文将介绍Gibbs采样的概念和步骤,并通过一个简单的例子演示如何使用Gibbs采样来采样从高斯分布中。Gibbs采样步骤Gibbs采样适用于联合分布(conditional distribution)可解析求解的情况下。下面是Gibb... Gibbs Gauss采样入门引言Gibbs采样是一种马尔可夫链蒙特卡洛(MCMC)方法,用于从一个高维的概率分布中采样。在多元统计学和机器学习领域广泛应用。本文将介绍Gibbs采样的概念和步骤,并通过一个简单的例子演示如何使用Gibbs采样来采样从高斯分布中。Gibbs采样步骤Gibbs采样适用于联合分布(conditional distribution)可解析求解的情况下。下面是Gibb...
- Python中的Gensim入门在自然语言处理(NLP)和信息检索领域中,文本向量化是一个重要的任务。文本向量化可以将文本数据转换为数值向量,以便于计算机进行处理和分析。Gensim是一个强大的Python库,专门用于处理文本数据和实现文本向量化。 本篇文章将带你入门使用Gensim库,介绍如何在Python中对文本进行向量化,并用其实现一些基本的文本相关任务。安装和导入Gensim库首先,... Python中的Gensim入门在自然语言处理(NLP)和信息检索领域中,文本向量化是一个重要的任务。文本向量化可以将文本数据转换为数值向量,以便于计算机进行处理和分析。Gensim是一个强大的Python库,专门用于处理文本数据和实现文本向量化。 本篇文章将带你入门使用Gensim库,介绍如何在Python中对文本进行向量化,并用其实现一些基本的文本相关任务。安装和导入Gensim库首先,...
- MinMaxScaler入门简介MinMaxScaler是一种常见的数据归一化方法,用于将数据特征缩放到指定的范围内。在数据预处理阶段,MinMaxScaler可以将原始数据转换为具有统一尺度的数据,这对许多机器学习算法是很重要的。 在本篇文章中,我们将介绍MinMaxScaler的基本原理、使用方法和示例代码,并通过一个实际的数据集来演示它的使用。MinMaxScaler原理MinMaxS... MinMaxScaler入门简介MinMaxScaler是一种常见的数据归一化方法,用于将数据特征缩放到指定的范围内。在数据预处理阶段,MinMaxScaler可以将原始数据转换为具有统一尺度的数据,这对许多机器学习算法是很重要的。 在本篇文章中,我们将介绍MinMaxScaler的基本原理、使用方法和示例代码,并通过一个实际的数据集来演示它的使用。MinMaxScaler原理MinMaxS...
- LoR算法入门在机器学习领域,逻辑回归(Logistic Regression, LoR)是一种常用的分类算法。逻辑回归与名字中的"回归"一词有些不同,实质上是一种二分类算法。本文将介绍逻辑回归的基本原理和使用方法。基本原理逻辑回归的基本原理是通过对输入特征进行线性加权和与一个特定函数进行映射,来预测样本属于某个类别的概率。该特定函数被称为“逻辑函数”或“sigmoid函数”,它的形状类似于... LoR算法入门在机器学习领域,逻辑回归(Logistic Regression, LoR)是一种常用的分类算法。逻辑回归与名字中的"回归"一词有些不同,实质上是一种二分类算法。本文将介绍逻辑回归的基本原理和使用方法。基本原理逻辑回归的基本原理是通过对输入特征进行线性加权和与一个特定函数进行映射,来预测样本属于某个类别的概率。该特定函数被称为“逻辑函数”或“sigmoid函数”,它的形状类似于...
- Facedes数据集介绍Facades数据集是一个用于图像分割任务的数据集,其中包含了建筑物外墙的图像和相应的二值分割图像。该数据集旨在帮助研究人员和开发者进行建筑物分割相关的算法研究和模型训练。数据集内容Facades数据集包含了106个建筑物外墙图像,每个图像的分辨率为512x512像素。对于每个图像,都有相应的二值分割图像,用于标注建筑物的区域。分割图像中的建筑物区域用白色表示(像素值... Facedes数据集介绍Facades数据集是一个用于图像分割任务的数据集,其中包含了建筑物外墙的图像和相应的二值分割图像。该数据集旨在帮助研究人员和开发者进行建筑物分割相关的算法研究和模型训练。数据集内容Facades数据集包含了106个建筑物外墙图像,每个图像的分辨率为512x512像素。对于每个图像,都有相应的二值分割图像,用于标注建筑物的区域。分割图像中的建筑物区域用白色表示(像素值...
- MNIST手写数据集简介MNIST是一个非常经典的手写数字数据集,由美国国家标准与技术研究所(NIST)在20世纪80年代整理和标注。这个数据集包含了一系列0到9的手写数字图像,用于机器学习中的图像分类任务。MNIST数据集被广泛应用于训练和验证机器学习模型的性能。数据集描述MNIST数据集包含了6万张训练图像和1万张测试图像。每张图像都是28*28像素的灰度图像(单通道)。每个像素点的灰度... MNIST手写数据集简介MNIST是一个非常经典的手写数字数据集,由美国国家标准与技术研究所(NIST)在20世纪80年代整理和标注。这个数据集包含了一系列0到9的手写数字图像,用于机器学习中的图像分类任务。MNIST数据集被广泛应用于训练和验证机器学习模型的性能。数据集描述MNIST数据集包含了6万张训练图像和1万张测试图像。每张图像都是28*28像素的灰度图像(单通道)。每个像素点的灰度...
上滑加载中
推荐直播
-
华为云软件开发生产线(CodeArts)4月新特性解读
2025/05/30 周五 16:30-17:30
Enki 华为云高级产品经理
不知道产品的最新特性?没法和产品团队建立直接的沟通?本期直播产品经理将为您解读华为云软件开发生产线4月发布的新特性,并在直播过程中为您答疑解惑。
回顾中 -
基于昇腾的皮肤病理多模态大模型研发
2025/06/05 周四 19:00-20:00
崔笑宇 华为开发者布道师-高校教师
本期直播聚焦昇腾AI平台在皮肤病理多模态大模型研发中的全流程技术突破,通过基于国产基座模型QwenV2.5进行微调,融入思维链数据优化推理能力,深度融合病理图像、临床文本及专家语音等多模态数据,构建覆盖“认知行为-逻辑推理-决策生成”全流程的皮肤病理大模型。
回顾中
热门标签