- 1. Gradient Descent(梯度下降)梯度下降算法是很常用的算法,可以将代价函数J最小化。它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域。1.1 线性回归问题应用我们有一个函数J(θ0,θ1),要使其最小化minJ(θ0,θ01):Outline对θ0,θ1开始进行一些猜测通常将初θ0,θ1初始化为0在梯度算法中,要做的就是不停的一点点改变θ0和θ1试图通过这种改... 1. Gradient Descent(梯度下降)梯度下降算法是很常用的算法,可以将代价函数J最小化。它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域。1.1 线性回归问题应用我们有一个函数J(θ0,θ1),要使其最小化minJ(θ0,θ01):Outline对θ0,θ1开始进行一些猜测通常将初θ0,θ1初始化为0在梯度算法中,要做的就是不停的一点点改变θ0和θ1试图通过这种改...
- 本章内容主要是介绍:单变量线性回归算法(Linear regression with one variable)1. 线性回归算法(linear regression)1.1 预测房屋价格下图是俄勒冈州波特兰市的住房价格和面积大小的关系:该问题属于监督学习中的回归问题,让我们来复习一下:监督学习(Supervised'Learning'):对示例数据给出“正确答案”。回归问题(Regress... 本章内容主要是介绍:单变量线性回归算法(Linear regression with one variable)1. 线性回归算法(linear regression)1.1 预测房屋价格下图是俄勒冈州波特兰市的住房价格和面积大小的关系:该问题属于监督学习中的回归问题,让我们来复习一下:监督学习(Supervised'Learning'):对示例数据给出“正确答案”。回归问题(Regress...
- 可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因... 可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因...
- 一、什么是回归? 回归的目的是为了预测,比如预测明天的天气温度,预测股票的走势… 回归之所以能预测是因为他通过历史数据,摸透了“套路”,然后通过这个套路(或者说规律)来预测未来的结果。 二、什么是... 一、什么是回归? 回归的目的是为了预测,比如预测明天的天气温度,预测股票的走势… 回归之所以能预测是因为他通过历史数据,摸透了“套路”,然后通过这个套路(或者说规律)来预测未来的结果。 二、什么是...
- 文章目录 2 引入2.1 模型概述2.1.1 预测房价问题2.1.2 符号 2.2 代价函数2.3 代价函数的用处2.4 回到问题2.5 梯度下降2.6 梯度下降知识点总结2.7 线性回归模... 文章目录 2 引入2.1 模型概述2.1.1 预测房价问题2.1.2 符号 2.2 代价函数2.3 代价函数的用处2.4 回到问题2.5 梯度下降2.6 梯度下降知识点总结2.7 线性回归模...
- 文章目录 致谢 9 线性回归再相遇9.1 再遇9.1.1 概述9.1.2 矩阵和向量9.1.3 矩阵加减乘除9.1.3.1 矩阵——矩阵加减9.1.3.2 矩阵——标量加减乘9.1.3.3 矩... 文章目录 致谢 9 线性回归再相遇9.1 再遇9.1.1 概述9.1.2 矩阵和向量9.1.3 矩阵加减乘除9.1.3.1 矩阵——矩阵加减9.1.3.2 矩阵——标量加减乘9.1.3.3 矩...
- 文章目录 十 岭回归10.1 岭回归的接口10.2 岭回归处理房价预测 十 岭回归 岭回归是线性回归的改进,有时候迫不得已我们的参数确实不能少,这时候过拟合的现象就可能发生。为了避免过... 文章目录 十 岭回归10.1 岭回归的接口10.2 岭回归处理房价预测 十 岭回归 岭回归是线性回归的改进,有时候迫不得已我们的参数确实不能少,这时候过拟合的现象就可能发生。为了避免过...
- 最小二乘法代数表示方法 假设多元线性方程有如下形式: f ( ... 最小二乘法代数表示方法 假设多元线性方程有如下形式: f ( ...
- 如果您的数据点显然不适合线性回归(穿过数据点之间的直线),那么多项式回归可能是理想的选择。它的出现就是为了弥补线性回归。 像线性回归一样,多项式回归使用变量 x 和 y 之间的关系来找到绘制数据点线的最... 如果您的数据点显然不适合线性回归(穿过数据点之间的直线),那么多项式回归可能是理想的选择。它的出现就是为了弥补线性回归。 像线性回归一样,多项式回归使用变量 x 和 y 之间的关系来找到绘制数据点线的最...
- 文章目录 一、什么是回归? 二、什么是线性回归? 三、线性回归 VS 逻辑回归 四、数据类型 五、线性回归 ... 文章目录 一、什么是回归? 二、什么是线性回归? 三、线性回归 VS 逻辑回归 四、数据类型 五、线性回归 ...
- 文章目录 一、提出任务 二、完成任务 (一)准备数据文件 (二)导入线性回归相关类 (三)读取数据文件得到RDD (四)拆分每行生成新... 文章目录 一、提出任务 二、完成任务 (一)准备数据文件 (二)导入线性回归相关类 (三)读取数据文件得到RDD (四)拆分每行生成新...
- 目录 前言3.2. 线性回归的从零开始实现3.2.1. 生成数据集3.2.2. 读取数据集3.2.3. 初始化模型参数3.2.4. 定义模型3.2.5. 定义损失函数3.2.6. 定义优化算法3.... 目录 前言3.2. 线性回归的从零开始实现3.2.1. 生成数据集3.2.2. 读取数据集3.2.3. 初始化模型参数3.2.4. 定义模型3.2.5. 定义损失函数3.2.6. 定义优化算法3....
- 线性回归 ①相关分析:一个连续变量与一个连续变量间的关系。 ②双样本t检验:一个二分分类变量与一个连续变量间的关系。 ③方差分析:一个多分类分类变量与一个连续变量间的关系。 ④卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。 本次介绍: 线性回归:多个连续变量与一个连... 线性回归 ①相关分析:一个连续变量与一个连续变量间的关系。 ②双样本t检验:一个二分分类变量与一个连续变量间的关系。 ③方差分析:一个多分类分类变量与一个连续变量间的关系。 ④卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。 本次介绍: 线性回归:多个连续变量与一个连...
- 这个脚本的目的是对MODSI EVI数据的时间序列拟合一个一阶谐波模型。线性回归还原器被用来估计谐波项和数据的长期趋势。 var c = ee.ImageCollection('MODIS/006/MOD13A1').select('EVI'); // 一个函数,根据从图像元数据中提取的场景开始时间计算自变量(即一阶傅... 这个脚本的目的是对MODSI EVI数据的时间序列拟合一个一阶谐波模型。线性回归还原器被用来估计谐波项和数据的长期趋势。 var c = ee.ImageCollection('MODIS/006/MOD13A1').select('EVI'); // 一个函数,根据从图像元数据中提取的场景开始时间计算自变量(即一阶傅...
- 要计算集合的长期线性趋势,请使用线性回归缩减器之一。以下代码计算 MODIS 增强型植被指数 (EVI) 的线性趋势: ee.Reducer.linearFit() 返回一个 Reducer,用于计算 2 个输入的(加权)线性回归的斜率和偏移量。输入应该是 x 数据,然后是 y 数据。 Returns a Reducer that... 要计算集合的长期线性趋势,请使用线性回归缩减器之一。以下代码计算 MODIS 增强型植被指数 (EVI) 的线性趋势: ee.Reducer.linearFit() 返回一个 Reducer,用于计算 2 个输入的(加权)线性回归的斜率和偏移量。输入应该是 x 数据,然后是 y 数据。 Returns a Reducer that...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
回顾中
热门标签