- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.7节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.7节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- AI-ANNE: 将神经网络迁移到微控制器的深度探索Klinkhammer D. AI-ANNE:(A)(N) eural (N) et for (E) xploration: Transferring Deep Learning Models onto Microcontrollers and Embedded Systems[J]. arXiv preprint arXiv:2501.... AI-ANNE: 将神经网络迁移到微控制器的深度探索Klinkhammer D. AI-ANNE:(A)(N) eural (N) et for (E) xploration: Transferring Deep Learning Models onto Microcontrollers and Embedded Systems[J]. arXiv preprint arXiv:2501....
- 法律文档智能分析系统:NLP+法律知识库的技术实现方案🌟 Hello,我是摘星!🌈 在彩虹般绚烂的技术栈中,我是那个永不停歇的色彩收集者。🦋 每一个优化都是我培育的花朵,每一个特性都是我放飞的蝴蝶。🔬 每一次代码审查都是我的显微镜观察,每一次重构都是我的化学实验。🎵 在编程的交响乐中,我既是指挥家也是演奏者。让我们一起,在技术的音乐厅里,奏响属于程序员的华美乐章。摘要在数字化转型的... 法律文档智能分析系统:NLP+法律知识库的技术实现方案🌟 Hello,我是摘星!🌈 在彩虹般绚烂的技术栈中,我是那个永不停歇的色彩收集者。🦋 每一个优化都是我培育的花朵,每一个特性都是我放飞的蝴蝶。🔬 每一次代码审查都是我的显微镜观察,每一次重构都是我的化学实验。🎵 在编程的交响乐中,我既是指挥家也是演奏者。让我们一起,在技术的音乐厅里,奏响属于程序员的华美乐章。摘要在数字化转型的...
- I-ViT: 用于高效视觉Transformer推理的纯整数量化Li Z, Gu Q. I-vit: Integer-only quantization for efficient vision transformer inference[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.... I-ViT: 用于高效视觉Transformer推理的纯整数量化Li Z, Gu Q. I-vit: Integer-only quantization for efficient vision transformer inference[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision....
- 模型量化技术简要详解 模型量化的本质与基础原理模型量化技术本质上是一种精度与效率的权衡艺术。想象一下,如果我们用数字来记录一个房间的温度,使用小数点后十位的精度(如23.1234567890°C)虽然非常精确,但在日常生活中,精确到小数点后一位(23.1°C)就足够了。模型量化的核心思想与此类似——将神经网络中的高精度浮点数(通常是32位浮点数,FP32)转换为低精度的整数表示(如8位整数... 模型量化技术简要详解 模型量化的本质与基础原理模型量化技术本质上是一种精度与效率的权衡艺术。想象一下,如果我们用数字来记录一个房间的温度,使用小数点后十位的精度(如23.1234567890°C)虽然非常精确,但在日常生活中,精确到小数点后一位(23.1°C)就足够了。模型量化的核心思想与此类似——将神经网络中的高精度浮点数(通常是32位浮点数,FP32)转换为低精度的整数表示(如8位整数...
- NLP参数高效迁移学习:Adapter方法的深度解析Houlsby N, Giurgiu A, Jastrzebski S, et al. Parameter-efficient transfer learning for NLP[C]//International conference on machine learning. PMLR, 2019: 2790-2799. 第一章 引言与... NLP参数高效迁移学习:Adapter方法的深度解析Houlsby N, Giurgiu A, Jastrzebski S, et al. Parameter-efficient transfer learning for NLP[C]//International conference on machine learning. PMLR, 2019: 2790-2799. 第一章 引言与...
- 人工智能(AI)在近年来取得了突破性进展,而其中自然语言处理(Natural Language Processing, NLP)是驱动AI Agent实现“人机对话”的核心技术。从早期的基于规则的对话系统,到如今结合深度学习与大语言模型的生成式AI,AI Agent在语言理解与生成方面的能力已经发生质的飞跃。本文将从 语言理解 和 语言生成 两个维度展开,分析其在AI Agent中的作用,并给出基 人工智能(AI)在近年来取得了突破性进展,而其中自然语言处理(Natural Language Processing, NLP)是驱动AI Agent实现“人机对话”的核心技术。从早期的基于规则的对话系统,到如今结合深度学习与大语言模型的生成式AI,AI Agent在语言理解与生成方面的能力已经发生质的飞跃。本文将从 语言理解 和 语言生成 两个维度展开,分析其在AI Agent中的作用,并给出基
- “日志别再只会翻了,教它自己说话”——聊聊用 NLP 玩转日志分析 “日志别再只会翻了,教它自己说话”——聊聊用 NLP 玩转日志分析
- DeepSeek 绝非仅局限于 NLP 问题,其在 CV 和预测类问题领域已展现出实质性突破。通过与华为云的深度协同,更实现了从技术能力到行业应用的完整闭环。对于开发者而言,可通过华为云 ModelArts Studio 快速接入模型,探索多模态场景下的创新应用;对于企业用户,建议优先在智能质检、供应链优化、智能客服等场景进行试点,逐步释放 AI 生产力。 DeepSeek 绝非仅局限于 NLP 问题,其在 CV 和预测类问题领域已展现出实质性突破。通过与华为云的深度协同,更实现了从技术能力到行业应用的完整闭环。对于开发者而言,可通过华为云 ModelArts Studio 快速接入模型,探索多模态场景下的创新应用;对于企业用户,建议优先在智能质检、供应链优化、智能客服等场景进行试点,逐步释放 AI 生产力。
- 智能体通信协议深度解析:A2A、ANP 与 MCP 的技术架构与生态演进 智能体通信协议深度解析:A2A、ANP 与 MCP 的技术架构与生态演进
- NLP 项目的系统性验收标准与评测方案,结合行业规范、技术特性与实际案例,覆盖核心技术指标、业务适配指标、合规与安全指标三大维度,并附分阶段验收流程与工具推荐: NLP 项目的系统性验收标准与评测方案,结合行业规范、技术特性与实际案例,覆盖核心技术指标、业务适配指标、合规与安全指标三大维度,并附分阶段验收流程与工具推荐:
- 通过系统化的指标设计与合同条款约束,可确保 NLP、CV、预测项目在技术、业务和合规层面全面达标。例如,某三甲医院 AI 影像诊断系统通过 “mIoU≥95% + 误诊率≤0.3% + DICOM 合规认证” 三重验收,最终通过国家医疗质量认证;某供应链金融平台通过 “MAE≤5% + 库存周转率提升 15% + 巴塞尔协议合规审计”,实现风险控制与效率优化的双重目标。 通过系统化的指标设计与合同条款约束,可确保 NLP、CV、预测项目在技术、业务和合规层面全面达标。例如,某三甲医院 AI 影像诊断系统通过 “mIoU≥95% + 误诊率≤0.3% + DICOM 合规认证” 三重验收,最终通过国家医疗质量认证;某供应链金融平台通过 “MAE≤5% + 库存周转率提升 15% + 巴塞尔协议合规审计”,实现风险控制与效率优化的双重目标。
- 在大模型领域,我们常常会看到诸如 7B、32B、671B 这样的表述,这里的 “B” 是 “billion” 的缩写,意为 “十亿” ,用于量化大模型所包含的参数数量。参数是模型在训练过程中学习和调整的数值,参数规模在一定程度上影响着模型的性能、理解能力与生成能力。通常,参数越多,模型能够学习到的知识和模式就越丰富,理论上在处理复杂任务时表现也会更出色。接下来,为你详细梳理当前主流大模型的参数规模 在大模型领域,我们常常会看到诸如 7B、32B、671B 这样的表述,这里的 “B” 是 “billion” 的缩写,意为 “十亿” ,用于量化大模型所包含的参数数量。参数是模型在训练过程中学习和调整的数值,参数规模在一定程度上影响着模型的性能、理解能力与生成能力。通常,参数越多,模型能够学习到的知识和模式就越丰富,理论上在处理复杂任务时表现也会更出色。接下来,为你详细梳理当前主流大模型的参数规模
- NLP 并非 “唯一的大模型”,而是大模型在语言模态的典型体现;CV 大模型的 “大”,则是视觉智能从 “感知” 迈向 “认知” 的必经之路。 NLP 并非 “唯一的大模型”,而是大模型在语言模态的典型体现;CV 大模型的 “大”,则是视觉智能从 “感知” 迈向 “认知” 的必经之路。
- 在 NLP 技术快速演进的当下,Function Call(函数调用)、MCP(多模态内容处理)、Agent(智能体)与智能体系统已成为突破传统模型能力边界的关键技术。本文在原有基模、RAG 等方案基础上,深入解析这些新兴技术的适用场景,帮助开发者构建更完整的技术选型框架。 在 NLP 技术快速演进的当下,Function Call(函数调用)、MCP(多模态内容处理)、Agent(智能体)与智能体系统已成为突破传统模型能力边界的关键技术。本文在原有基模、RAG 等方案基础上,深入解析这些新兴技术的适用场景,帮助开发者构建更完整的技术选型框架。
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签