- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.7节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.7节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 命名实体识别(NER)是自然语言处理中的关键任务,而Stanford NLP工具包作为Java环境下的强大工具,为开发者提供了词性标注、句法分析和NER等功能。针对特定领域(如金融、医疗),默认模型可能无法满足需求,因此优化至关重要。优化方法包括数据预处理(文本清洗、分词、词性标注)、模型定制(微调CRF模型或融合多模型)、特征工程(上下文特征、领域词典)及性能提升(模型压缩、并行计算)。 命名实体识别(NER)是自然语言处理中的关键任务,而Stanford NLP工具包作为Java环境下的强大工具,为开发者提供了词性标注、句法分析和NER等功能。针对特定领域(如金融、医疗),默认模型可能无法满足需求,因此优化至关重要。优化方法包括数据预处理(文本清洗、分词、词性标注)、模型定制(微调CRF模型或融合多模型)、特征工程(上下文特征、领域词典)及性能提升(模型压缩、并行计算)。
- Java与人工智能:自然语言处理与图像识别的Java应用人工智能(AI)已经成为当今科技领域的热门话题,而Java作为一门历史悠久、生态丰富的编程语言,在AI领域也发挥着重要作用。本文将重点探讨Java在自然语言处理(NLP)和图像识别两大AI核心领域的应用,并提供详细的代码示例。 一、Java在自然语言处理中的应用自然语言处理是AI的一个重要分支,它使计算机能够理解、解释和生成人类语言。... Java与人工智能:自然语言处理与图像识别的Java应用人工智能(AI)已经成为当今科技领域的热门话题,而Java作为一门历史悠久、生态丰富的编程语言,在AI领域也发挥着重要作用。本文将重点探讨Java在自然语言处理(NLP)和图像识别两大AI核心领域的应用,并提供详细的代码示例。 一、Java在自然语言处理中的应用自然语言处理是AI的一个重要分支,它使计算机能够理解、解释和生成人类语言。...
- 引言在现代自然语言处理(NLP)领域,HuggingFace Transformers 库已经成为了不可或缺的基础工具。作为一个开源项目,它不仅提供了数千个预训练模型,还大大简化了最先进NLP模型的使用和微调过程。因此,掌握这个库的深度使用还是极为重要的。本指南将采用以下学习路径:按照基础环境搭建、核心API使用、实战案例应用、高级优化技巧来帮助各位读者渐进式地掌握它的使用。💡阅读本指南... 引言在现代自然语言处理(NLP)领域,HuggingFace Transformers 库已经成为了不可或缺的基础工具。作为一个开源项目,它不仅提供了数千个预训练模型,还大大简化了最先进NLP模型的使用和微调过程。因此,掌握这个库的深度使用还是极为重要的。本指南将采用以下学习路径:按照基础环境搭建、核心API使用、实战案例应用、高级优化技巧来帮助各位读者渐进式地掌握它的使用。💡阅读本指南...
- 从零开始用Pytorch实现LLaMA 4的混合专家(MoE)模型 介绍混合专家模型(Mixture of Experts, MoE)是深度学习中一种动态路由策略,旨在通过激活部分专家模块以减少计算量。这种模型可以根据输入数据选择最合适的专家,从而提高模型效率和准确性。LLaMA(Large Language Model Meta AI)4是一个大型语言模型,它可以与MoE结合以提升性能。... 从零开始用Pytorch实现LLaMA 4的混合专家(MoE)模型 介绍混合专家模型(Mixture of Experts, MoE)是深度学习中一种动态路由策略,旨在通过激活部分专家模块以减少计算量。这种模型可以根据输入数据选择最合适的专家,从而提高模型效率和准确性。LLaMA(Large Language Model Meta AI)4是一个大型语言模型,它可以与MoE结合以提升性能。...
- 在自然语言处理(NLP)中,文本表示是核心步骤之一。有效的文本表示能够帮助机器理解和处理人类语言。在文本表示方法中,词向量、词袋模型和上下文嵌入是三种重要且具有代表性的技术。本文将详细介绍这三种方法的基本概念、特点及其应用。 1. 词袋模型(Bag of Words, BOW) 1.1 基本概念词袋模型是一种简单且直观的文本表示方法。它通过统计文档中单词的出现频率来表示文本,而不考虑单词的顺... 在自然语言处理(NLP)中,文本表示是核心步骤之一。有效的文本表示能够帮助机器理解和处理人类语言。在文本表示方法中,词向量、词袋模型和上下文嵌入是三种重要且具有代表性的技术。本文将详细介绍这三种方法的基本概念、特点及其应用。 1. 词袋模型(Bag of Words, BOW) 1.1 基本概念词袋模型是一种简单且直观的文本表示方法。它通过统计文档中单词的出现频率来表示文本,而不考虑单词的顺...
- Python Transformers库【NLP处理库】全面讲解 介绍Transformers 是由 Hugging Face 提供的一个强大的自然语言处理(NLP)库,旨在通过简单的 API 接口,使开发者能够使用预训练的深度学习模型来处理各种 NLP 任务,如文本分类、文本生成、翻译等。 引言随着深度学习和大数据技术的发展,NLP 的应用已经深入到日常生活的方方面面。Transform... Python Transformers库【NLP处理库】全面讲解 介绍Transformers 是由 Hugging Face 提供的一个强大的自然语言处理(NLP)库,旨在通过简单的 API 接口,使开发者能够使用预训练的深度学习模型来处理各种 NLP 任务,如文本分类、文本生成、翻译等。 引言随着深度学习和大数据技术的发展,NLP 的应用已经深入到日常生活的方方面面。Transform...
- 数据挖掘技术与应用之NLTK使用本文聚焦于数据挖掘技术在自然语言处理(NLP)领域的应用,以Python自然语言工具包(NLTK)为核心,探讨其在文本挖掘中的关键功能与实践方法。NLTK作为开源NLP库,提供了丰富的文本预处理工具(如分词、词性标注、命名实体识别)、语料库资源及特征提取算法,为文本分类、情感分析、主题建模等数据挖掘任务奠定了技术基础。文章通过案例分析,展示了如何利用NLTK实... 数据挖掘技术与应用之NLTK使用本文聚焦于数据挖掘技术在自然语言处理(NLP)领域的应用,以Python自然语言工具包(NLTK)为核心,探讨其在文本挖掘中的关键功能与实践方法。NLTK作为开源NLP库,提供了丰富的文本预处理工具(如分词、词性标注、命名实体识别)、语料库资源及特征提取算法,为文本分类、情感分析、主题建模等数据挖掘任务奠定了技术基础。文章通过案例分析,展示了如何利用NLTK实...
- 第 1 章:Prompt 基础 1.1 什么是 Prompt? 1.1.1 Prompt 的定义 1.1.2 Prompt 编程与传统编程的区别 1.2 Prompt 的作用与应用场景 1.2.1 自然语言处理(NLP) 1.2.2 AI 对话系统(ChatGPT、Claude) 1.2.3 代码生成与优化 1.2.4 视觉与多模态 AI 1.3 常见 Prompt 结构与写作原则 1.3... 第 1 章:Prompt 基础 1.1 什么是 Prompt? 1.1.1 Prompt 的定义 1.1.2 Prompt 编程与传统编程的区别 1.2 Prompt 的作用与应用场景 1.2.1 自然语言处理(NLP) 1.2.2 AI 对话系统(ChatGPT、Claude) 1.2.3 代码生成与优化 1.2.4 视觉与多模态 AI 1.3 常见 Prompt 结构与写作原则 1.3...
- 在自然语言处理(NLP)领域,模型训练依赖计算图这一底层架构。动态计算图以灵活性见长,适合调试与开发,但运行效率较低;静态计算图则以高效性和全局优化能力著称,利于大规模训练和部署,但调试复杂且灵活性受限。两者各有优劣,适用于不同场景:研究初期宜用动态计算图,生产阶段则偏好静态计算图。它们共同推动了NLP技术的发展,为自然语言处理的广泛应用提供了技术支持。 在自然语言处理(NLP)领域,模型训练依赖计算图这一底层架构。动态计算图以灵活性见长,适合调试与开发,但运行效率较低;静态计算图则以高效性和全局优化能力著称,利于大规模训练和部署,但调试复杂且灵活性受限。两者各有优劣,适用于不同场景:研究初期宜用动态计算图,生产阶段则偏好静态计算图。它们共同推动了NLP技术的发展,为自然语言处理的广泛应用提供了技术支持。
- 前馈神经网络(FFN)是自然语言处理(NLP)领域中不可或缺的组件,尤其在Transformer等架构中发挥重要作用。FFN通过非线性变换和特征提取,增强模型对复杂语义的理解能力,同时平衡注意力机制输出,提升泛化性能。其基本结构包括输入层、隐藏层和输出层,工作原理涉及加权求和与激活函数处理。 前馈神经网络(FFN)是自然语言处理(NLP)领域中不可或缺的组件,尤其在Transformer等架构中发挥重要作用。FFN通过非线性变换和特征提取,增强模型对复杂语义的理解能力,同时平衡注意力机制输出,提升泛化性能。其基本结构包括输入层、隐藏层和输出层,工作原理涉及加权求和与激活函数处理。
- Transformer架构通过自注意力机制革新了自然语言处理,但其位置无关特性需依赖位置编码来感知序列顺序。位置编码方式包括正弦编码(简单高效)、可学习编码(灵活适配)和相对位置编码(捕捉语法语义)。不同任务与数据规模需权衡选择编码方式。未来,结合外部知识及新兴计算技术的位置编码有望进一步提升模型性能,推动自然语言处理技术发展。 Transformer架构通过自注意力机制革新了自然语言处理,但其位置无关特性需依赖位置编码来感知序列顺序。位置编码方式包括正弦编码(简单高效)、可学习编码(灵活适配)和相对位置编码(捕捉语法语义)。不同任务与数据规模需权衡选择编码方式。未来,结合外部知识及新兴计算技术的位置编码有望进一步提升模型性能,推动自然语言处理技术发展。
- 多头注意力机制是自然语言处理(NLP)领域的核心技术,基于人类大脑选择性关注的灵感,通过多个“注意力头”从不同角度分析输入数据,显著提升模型对语言的理解和表达能力。它在Transformer架构中广泛应用,如BERT和GPT系列,推动了机器翻译、文本生成等任务的突破。然而,该机制也面临计算复杂度高和可解释性差的挑战。 多头注意力机制是自然语言处理(NLP)领域的核心技术,基于人类大脑选择性关注的灵感,通过多个“注意力头”从不同角度分析输入数据,显著提升模型对语言的理解和表达能力。它在Transformer架构中广泛应用,如BERT和GPT系列,推动了机器翻译、文本生成等任务的突破。然而,该机制也面临计算复杂度高和可解释性差的挑战。
- BERT与GPT系列模型是自然语言处理(NLP)领域的里程碑。基于Transformer架构,BERT通过双向编码实现深度语言理解,适用于情感分析、命名实体识别等任务;GPT则以单向生成见长,能够创作连贯文本,广泛应用于对话系统和内容生成。两者虽在架构与目标上各有侧重,但其融合探索正推动更通用的NLP模型发展。 BERT与GPT系列模型是自然语言处理(NLP)领域的里程碑。基于Transformer架构,BERT通过双向编码实现深度语言理解,适用于情感分析、命名实体识别等任务;GPT则以单向生成见长,能够创作连贯文本,广泛应用于对话系统和内容生成。两者虽在架构与目标上各有侧重,但其融合探索正推动更通用的NLP模型发展。
- colossal-ai工具+LoRa技术对deepseek蒸馏模型进行微调 colossal-ai工具+LoRa技术对deepseek蒸馏模型进行微调
上滑加载中
推荐直播
-
华为云鸿蒙应用入门级开发者认证
2025/06/11 周三 16:00-17:30
Skye / 华为云学堂技术讲师
本次直播专为备考华为云鸿蒙端云应用入门级开发者认证的学员设计,提供系统的考试辅导。深度解析认证核心知识点,涵盖HarmonyOS介绍、应用开发入门、ArkTS语言、声明式开发范式组件、Stage应用模型、玩转服务卡片、鸿蒙应用网络请求开发、鸿蒙应用云函数调用等内容。
回顾中 -
基于昇腾NPU的合成孔径雷达成像案例
2025/06/12 周四 19:00-20:00
李阳 华为开发者布道师-高校教师
介绍合成孔径雷达算法的原理和优势,了解合成孔径雷达在传统计算中的痛点,分享如何使用昇腾NPU和AscendC语言构建信号处理算子,如何助力信号处理领域的高性能计算。
回顾中 -
华为云GaussDB入门级认证 - 考试辅导
2025/06/13 周五 16:00-17:30
Steven / 华为云学堂技术讲师
本次直播为HCCDA-GaussDB认证考试提供全面辅导,旨在帮助学员深入了解数据库技术原理与应用实践。我们将详细解析考试大纲,分享高效备考策略,并讲解关键知识点,包括但不限于SQL操作介绍、GaussDB数据库管理与运维基础等。
回顾中
热门标签