- 在本文中,我们深入探讨了语言模型的内部工作机制,从基础模型到大规模的变种,并分析了各种评价指标的优缺点。文章通过代码示例、算法细节和最新研究,提供了一份全面而深入的视角,旨在帮助读者更准确地理解和评估语言模型的性能。本文适用于研究者、开发者以及对人工智能有兴趣的广大读者。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复... 在本文中,我们深入探讨了语言模型的内部工作机制,从基础模型到大规模的变种,并分析了各种评价指标的优缺点。文章通过代码示例、算法细节和最新研究,提供了一份全面而深入的视角,旨在帮助读者更准确地理解和评估语言模型的性能。本文适用于研究者、开发者以及对人工智能有兴趣的广大读者。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复...
- 本文全面回顾了自然语言处理(NLP)从20世纪50年代至今的历史发展。从初创期的符号学派和随机学派,到理性主义时代的逻辑和规则范式,再到经验主义和深度学习时代的数据驱动方法,以及最近的大模型时代,NLP经历了多次技术革新和范式转换。文章不仅详细介绍了每个阶段的核心概念和技术,还提供了丰富的Python和PyTorch实战代码。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服... 本文全面回顾了自然语言处理(NLP)从20世纪50年代至今的历史发展。从初创期的符号学派和随机学派,到理性主义时代的逻辑和规则范式,再到经验主义和深度学习时代的数据驱动方法,以及最近的大模型时代,NLP经历了多次技术革新和范式转换。文章不仅详细介绍了每个阶段的核心概念和技术,还提供了丰富的Python和PyTorch实战代码。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服...
- 本文从BERT的基本概念和架构开始,详细讲解了其预训练和微调机制,并通过Python和PyTorch代码示例展示了如何在实际应用中使用这一模型。我们探讨了BERT的核心特点,包括其强大的注意力机制和与其他Transformer架构的差异。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证... 本文从BERT的基本概念和架构开始,详细讲解了其预训练和微调机制,并通过Python和PyTorch代码示例展示了如何在实际应用中使用这一模型。我们探讨了BERT的核心特点,包括其强大的注意力机制和与其他Transformer架构的差异。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证...
- 在本文中,我们深入探讨了注意力机制的理论基础和实际应用。从其历史发展和基础定义,到具体的数学模型,再到其在自然语言处理和计算机视觉等多个人工智能子领域的应用实例,本文为您提供了一个全面且深入的视角。通过Python和PyTorch代码示例,我们还展示了如何实现这一先进的机制。关注TechLead,分享AI技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本... 在本文中,我们深入探讨了注意力机制的理论基础和实际应用。从其历史发展和基础定义,到具体的数学模型,再到其在自然语言处理和计算机视觉等多个人工智能子领域的应用实例,本文为您提供了一个全面且深入的视角。通过Python和PyTorch代码示例,我们还展示了如何实现这一先进的机制。关注TechLead,分享AI技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本...
- 🍀引言本节以KNN算法为主,简单介绍一下训练集和测试集、超参数🍀训练集和测试集训练集和测试集是机器学习和深度学习中常用的概念。在模型训练过程中,通常将数据集划分为训练集和测试集,用于训练和评估模型的性能。训练集是用于模型训练的数据集合。模型通过对训练集中的样本进行学习和参数调整来提高自身的预测能力。训练集应该尽可能包含各种不同的样本,以使模型能够学习到数据集中的模式和规律,并能够适应新的... 🍀引言本节以KNN算法为主,简单介绍一下训练集和测试集、超参数🍀训练集和测试集训练集和测试集是机器学习和深度学习中常用的概念。在模型训练过程中,通常将数据集划分为训练集和测试集,用于训练和评估模型的性能。训练集是用于模型训练的数据集合。模型通过对训练集中的样本进行学习和参数调整来提高自身的预测能力。训练集应该尽可能包含各种不同的样本,以使模型能够学习到数据集中的模式和规律,并能够适应新的...
- 🍀KNN算法的封装调用封装代码如下%run my_knn/my_knn.py在封装之前,我们需要在同级目录下准备一个my_knn文件夹以及在文件夹下准备一个my_knn.py文件在调用之前需要先实例化,自定义的类名如下Knnknn = Knn() # 实例化knn.fit(X_train,y_train)knn.predict(np.array(([4,2],[2,5],[9,6])))... 🍀KNN算法的封装调用封装代码如下%run my_knn/my_knn.py在封装之前,我们需要在同级目录下准备一个my_knn文件夹以及在文件夹下准备一个my_knn.py文件在调用之前需要先实例化,自定义的类名如下Knnknn = Knn() # 实例化knn.fit(X_train,y_train)knn.predict(np.array(([4,2],[2,5],[9,6])))...
- KNN算法介绍KNN(K Near Neighbor):k个最近的邻居,即每个样本都可以用它最接近的k个邻居来代表。KNN算法属于监督学习方式的分类算法,我的理解就是计算某给点到每个点的距离作为相似度的反馈。简单来讲,KNN就是“近朱者赤,近墨者黑”的一种分类算法。KNN是一种基于实例的学习,属于懒惰学习,即没有显式学习过程。要区分一下聚类(如Kmeans等),KNN是监督学习分类,而Kme... KNN算法介绍KNN(K Near Neighbor):k个最近的邻居,即每个样本都可以用它最接近的k个邻居来代表。KNN算法属于监督学习方式的分类算法,我的理解就是计算某给点到每个点的距离作为相似度的反馈。简单来讲,KNN就是“近朱者赤,近墨者黑”的一种分类算法。KNN是一种基于实例的学习,属于懒惰学习,即没有显式学习过程。要区分一下聚类(如Kmeans等),KNN是监督学习分类,而Kme...
- k最近邻(kNN)算法入门引言k最近邻(kNN)算法是机器学习中最简单、最易于理解的分类算法之一。它基于实例之间的距离度量来进行分类,并且没有显式的训练过程。本文将介绍k最近邻算法的基本原理和使用方法,并通过一个示例来说明其应用过程。算法原理k最近邻算法的原理非常简单:给定一个未知样本,将其与训练集中的实例进行距离度量,取距离最近的k个实例,根据这k个实例的类别进行投票,将未知样本归为票数最... k最近邻(kNN)算法入门引言k最近邻(kNN)算法是机器学习中最简单、最易于理解的分类算法之一。它基于实例之间的距离度量来进行分类,并且没有显式的训练过程。本文将介绍k最近邻算法的基本原理和使用方法,并通过一个示例来说明其应用过程。算法原理k最近邻算法的原理非常简单:给定一个未知样本,将其与训练集中的实例进行距离度量,取距离最近的k个实例,根据这k个实例的类别进行投票,将未知样本归为票数最...
- 解决Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2当你在运行TensorFlow代码时,可能会遇到以下错误信息:plaintextCopy codeYour CPU supports instructions that this TensorFlow bi... 解决Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2当你在运行TensorFlow代码时,可能会遇到以下错误信息:plaintextCopy codeYour CPU supports instructions that this TensorFlow bi...
- AlexNet算法入门引言AlexNet是一个非常经典的卷积神经网络(Convolutional Neural Network, CNN),它由Alex Krizhevsky等人在2012年提出,并在ImageNet图像识别比赛中获得了很大的成功。AlexNet算法的出现标志着深度学习的兴起,并对后续的神经网络算法有着深远的影响。本篇文章将带你入门AlexNet算法的基本原理和实现。算法原理... AlexNet算法入门引言AlexNet是一个非常经典的卷积神经网络(Convolutional Neural Network, CNN),它由Alex Krizhevsky等人在2012年提出,并在ImageNet图像识别比赛中获得了很大的成功。AlexNet算法的出现标志着深度学习的兴起,并对后续的神经网络算法有着深远的影响。本篇文章将带你入门AlexNet算法的基本原理和实现。算法原理...
- PyTorch中的LeNet-5入门LeNet-5是一个经典的卷积神经网络(CNN)模型,由Yann LeCun等人在1998年提出。它在手写数字识别任务上取得了很好的性能,并被广泛应用于图像分类问题。本文将介绍如何使用PyTorch实现LeNet-5模型,并在MNIST手写数字数据集上进行训练和测试。数据集介绍MNIST是一个常用的手写数字识别数据集,包括60000个训练样本和10000个... PyTorch中的LeNet-5入门LeNet-5是一个经典的卷积神经网络(CNN)模型,由Yann LeCun等人在1998年提出。它在手写数字识别任务上取得了很好的性能,并被广泛应用于图像分类问题。本文将介绍如何使用PyTorch实现LeNet-5模型,并在MNIST手写数字数据集上进行训练和测试。数据集介绍MNIST是一个常用的手写数字识别数据集,包括60000个训练样本和10000个...
- MetaGPT( The Multi-Agent Framework):颠覆AI开发的革命性多智能体元编程框架 MetaGPT( The Multi-Agent Framework):颠覆AI开发的革命性多智能体元编程框架
- 1写在前面工作原因,顺便整理博文内容为一个 人脸检测服务分享以打包 Docker 镜像,可以直接使用服务目前支持 http 方式该检测器主要适用低质量人脸图片处理理解不足小伙伴帮忙指正,多交流,相互学习 对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼... 1写在前面工作原因,顺便整理博文内容为一个 人脸检测服务分享以打包 Docker 镜像,可以直接使用服务目前支持 http 方式该检测器主要适用低质量人脸图片处理理解不足小伙伴帮忙指正,多交流,相互学习 对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼...
- 数字时代的自我呈现:探索个人形象打造的创新工具——FaceChain深度学习模型工具 数字时代的自我呈现:探索个人形象打造的创新工具——FaceChain深度学习模型工具
- 本文深入探讨了深度信念网络DBN的核心概念、结构、Pytorch实战,分析其在深度学习网络中的定位、潜力与应用场景。 本文深入探讨了深度信念网络DBN的核心概念、结构、Pytorch实战,分析其在深度学习网络中的定位、潜力与应用场景。
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签