- 一、遗传算法优化小波神经网络简介 1 小波神经网络 1.1 小波神经网络结构 小波神经网络分为松散型与融合型两类, 前者将小波分析作为神经网络的前置手段, 对网络输入初步优化, 使得信息便于神经网络的处... 一、遗传算法优化小波神经网络简介 1 小波神经网络 1.1 小波神经网络结构 小波神经网络分为松散型与融合型两类, 前者将小波分析作为神经网络的前置手段, 对网络输入初步优化, 使得信息便于神经网络的处...
- 学号: 2021211127院系:航天航空学院姓名:薛 锋 丰 §01 前 言 人工神经网络往往具有万能拟合器的作用,因此对于某些复杂的、难以用常规的数学手... 学号: 2021211127院系:航天航空学院姓名:薛 锋 丰 §01 前 言 人工神经网络往往具有万能拟合器的作用,因此对于某些复杂的、难以用常规的数学手...
- 简 介: 目标检测是计算机视觉的一个重要应用方向,深度神经网络的提出极大地帮助基于视觉的目标检测提高了准确度。自2014年以来,深度神经网络在基于视觉的目标检测中被广泛应用,出现了多种算法。本文... 简 介: 目标检测是计算机视觉的一个重要应用方向,深度神经网络的提出极大地帮助基于视觉的目标检测提高了准确度。自2014年以来,深度神经网络在基于视觉的目标检测中被广泛应用,出现了多种算法。本文...
- 目录 摘要 1、 模型结构 各层参数详解: 1、输入层-INPUT 2、C1层-卷积层 3、S2层-池化层(下采样层) 4、C3层-卷积层 5、S4层-池化层(下采样层) 6、C5层-卷积层 7、F6层-全连接层 8、Output层-全连接层 各层参数总结 2、模型特性 代码复现: 摘要 ... 目录 摘要 1、 模型结构 各层参数详解: 1、输入层-INPUT 2、C1层-卷积层 3、S2层-池化层(下采样层) 4、C3层-卷积层 5、S4层-池化层(下采样层) 6、C5层-卷积层 7、F6层-全连接层 8、Output层-全连接层 各层参数总结 2、模型特性 代码复现: 摘要 ...
- 目录 1、定义 2、有了CNN,为什么需要RNN? 3、RNN的主要应用领域有哪些呢? 4、RNN的计算过程 5、标准RNN前向输出流程 6、RNN的建模方式 1、一对多(vector-to-sequence ) 2、多对一(sequence-to-vector ) 3、多对多(Encoder-Decoder ) 7... 目录 1、定义 2、有了CNN,为什么需要RNN? 3、RNN的主要应用领域有哪些呢? 4、RNN的计算过程 5、标准RNN前向输出流程 6、RNN的建模方式 1、一对多(vector-to-sequence ) 2、多对一(sequence-to-vector ) 3、多对多(Encoder-Decoder ) 7...
- 摘要 最近的许多工作通过视差估计恢复点云,然后应用3D探测器解决了这一问题。视差图是为整个图像计算的,这是昂贵的,并且不能利用特定类别的先验。相反,我们设计了一个实例视差估计网络 iDispNet,... 摘要 最近的许多工作通过视差估计恢复点云,然后应用3D探测器解决了这一问题。视差图是为整个图像计算的,这是昂贵的,并且不能利用特定类别的先验。相反,我们设计了一个实例视差估计网络 iDispNet,...
- 【语音识别】⚠️玩转语音识别 2⚠️ 知识补充 概述RNN计算RNN 存在的问题LSTMGRUSeq2seqAttention 模型Teacher Forcing 机制 概述 从今天开始我... 【语音识别】⚠️玩转语音识别 2⚠️ 知识补充 概述RNN计算RNN 存在的问题LSTMGRUSeq2seqAttention 模型Teacher Forcing 机制 概述 从今天开始我...
- 目的识别手写数字图片是深度学习的print(“Hello world!”),是入门级别的小实验,主要是熟悉卷积神经网络的开发流程。本次用到的依然是经典的minist数据集,不过事先分出了训练集和测试集并转换成csv格式。网络结构和流程1.结构简述由于数据比较简单,所以用到的模型不是很复杂,使用了两层的卷积层和两层全连接层共四层网络,其中卷积层均采用5x5的卷积核,并带有2x2的池化,训练迭代... 目的识别手写数字图片是深度学习的print(“Hello world!”),是入门级别的小实验,主要是熟悉卷积神经网络的开发流程。本次用到的依然是经典的minist数据集,不过事先分出了训练集和测试集并转换成csv格式。网络结构和流程1.结构简述由于数据比较简单,所以用到的模型不是很复杂,使用了两层的卷积层和两层全连接层共四层网络,其中卷积层均采用5x5的卷积核,并带有2x2的池化,训练迭代...
- 本文转载自https://www.zybuluo.com/huanghaian/note/1743266github: https://github.com/hhaAndroid/mmdetection-mini欢迎star部分内容有删改本节主要说明下mmdetection-mini到目前为止已经新增的一些用来分析数据,分析模型,分析模型预测质量的工具,在实际项目中针对自己的数据进行可视化分... 本文转载自https://www.zybuluo.com/huanghaian/note/1743266github: https://github.com/hhaAndroid/mmdetection-mini欢迎star部分内容有删改本节主要说明下mmdetection-mini到目前为止已经新增的一些用来分析数据,分析模型,分析模型预测质量的工具,在实际项目中针对自己的数据进行可视化分...
- @Author:Runsen 姿态估计是计算机视觉中的一项流行任务,比如真实的场景如何进行人体跌倒检测,如何对手语进行交流。 作为人工智能(AI)的一个领域,计算机视觉使机器能够以模仿人类视觉为目的来... @Author:Runsen 姿态估计是计算机视觉中的一项流行任务,比如真实的场景如何进行人体跌倒检测,如何对手语进行交流。 作为人工智能(AI)的一个领域,计算机视觉使机器能够以模仿人类视觉为目的来...
- @Author:Runsen 在图像领域,除了分类,CNN 今天还用于更高级的问题,如图像分割、对象检测等。图像分割是计算机视觉中的一个过程,其中图像被分割成代表图像中每个不同类别的不同段。 上面... @Author:Runsen 在图像领域,除了分类,CNN 今天还用于更高级的问题,如图像分割、对象检测等。图像分割是计算机视觉中的一个过程,其中图像被分割成代表图像中每个不同类别的不同段。 上面...
- 文章目录 一、从混淆矩阵谈起二、Precision、Recall、PRC、F1-score三、ROC & AUC四、如何选择评估指标?五、IOU “没有测量,就没有科学。”这是科学家门捷列夫的名言。在计算机科学中,特别是在机器学习的领域,对模型的测量和评估同样至关重要。只有选择与问题相匹配的评估方法,我们才能够准确地发现在模型选择和训练过程中可能出... 文章目录 一、从混淆矩阵谈起二、Precision、Recall、PRC、F1-score三、ROC & AUC四、如何选择评估指标?五、IOU “没有测量,就没有科学。”这是科学家门捷列夫的名言。在计算机科学中,特别是在机器学习的领域,对模型的测量和评估同样至关重要。只有选择与问题相匹配的评估方法,我们才能够准确地发现在模型选择和训练过程中可能出...
- 写在前面:大家好!我是【AI 菌】,一枚爱弹吉他的程序员。我热爱AI、热爱分享、热爱开源! 这博客是我对学习的一点总结与思考。如果您也对 深度学习、机器视觉、算法、Python、C++ 感兴趣,可以关注我的动态,我们一起学习,一起进步~ 我的博客地址为:【AI 菌】的博客 我的Github项目地址是:【AI 菌】的Github 这篇论文原名为:《Faster... 写在前面:大家好!我是【AI 菌】,一枚爱弹吉他的程序员。我热爱AI、热爱分享、热爱开源! 这博客是我对学习的一点总结与思考。如果您也对 深度学习、机器视觉、算法、Python、C++ 感兴趣,可以关注我的动态,我们一起学习,一起进步~ 我的博客地址为:【AI 菌】的博客 我的Github项目地址是:【AI 菌】的Github 这篇论文原名为:《Faster...
- 论文名称 AMA-GCN: Adaptive Multi-layer Aggregation Graph Convolutional Network for Disease Prediction 表型对于医疗影像诊断会有负面影响,多图融合方法的参数随着表型的增加而变大,从而影响模型的效果。为了应对上述挑战,作者提出了一种新的相似性感知自适应校正多层聚合称GCN结... 论文名称 AMA-GCN: Adaptive Multi-layer Aggregation Graph Convolutional Network for Disease Prediction 表型对于医疗影像诊断会有负面影响,多图融合方法的参数随着表型的增加而变大,从而影响模型的效果。为了应对上述挑战,作者提出了一种新的相似性感知自适应校正多层聚合称GCN结...
- 理解神经网络的本质 一、前言 最近深度学习是一个比较热门的词,各行各业都声称自己使用了深度学习技术。现在“深度学习”这个词,就像印在球鞋上的“Fashion”、“Sport”。那深度学习到底是什么呢? 深度学习是机器学习的一个分支,当我们使用了“深度神经网络”算法进行机器学习时,我们就可以说自己在搞深度学习。而这个“神经网络”算法就是我们今天的主题。 关于机器学... 理解神经网络的本质 一、前言 最近深度学习是一个比较热门的词,各行各业都声称自己使用了深度学习技术。现在“深度学习”这个词,就像印在球鞋上的“Fashion”、“Sport”。那深度学习到底是什么呢? 深度学习是机器学习的一个分支,当我们使用了“深度神经网络”算法进行机器学习时,我们就可以说自己在搞深度学习。而这个“神经网络”算法就是我们今天的主题。 关于机器学...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签