- See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263621033</n>Article in Proceedings - IEEE International Conference on Robotics and A... See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263621033</n>Article in Proceedings - IEEE International Conference on Robotics and A...
- 带着问题:1、怎么利用ORB特征进行定位和建图?2、怎么进行特征的跟踪和映射? 摘要当前的视觉 SLAM 系统构建的地图非常适合在会话期间跟踪相机。然而,这些地图并非设计用于在其他会话中使用不同的相机甚至相同的相机执行定位,而是从不同的视点观察地图。这种限制来自缺乏被识别的地图能力。在本文中,我们提出了一种新的基于关键帧的 SLAM 系统,它通过直接映射可用于识别的特征来提高地图的可重用性。... 带着问题:1、怎么利用ORB特征进行定位和建图?2、怎么进行特征的跟踪和映射? 摘要当前的视觉 SLAM 系统构建的地图非常适合在会话期间跟踪相机。然而,这些地图并非设计用于在其他会话中使用不同的相机甚至相同的相机执行定位,而是从不同的视点观察地图。这种限制来自缺乏被识别的地图能力。在本文中,我们提出了一种新的基于关键帧的 SLAM 系统,它通过直接映射可用于识别的特征来提高地图的可重用性。...
- 卷积神经网络–CNN 1. 卷积神经网络介绍卷积神经网络(Convolutional Neural Networks,CNN)是一种包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。常见的CNN网络有LeNet-5、VGGNet、GoogleNet、ResNet、DenseNet、MobileNet等。CNN主要应用场景: 图像分类、图像分割 、 目标检测 、 自然语言处... 卷积神经网络–CNN 1. 卷积神经网络介绍卷积神经网络(Convolutional Neural Networks,CNN)是一种包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。常见的CNN网络有LeNet-5、VGGNet、GoogleNet、ResNet、DenseNet、MobileNet等。CNN主要应用场景: 图像分类、图像分割 、 目标检测 、 自然语言处...
- 主页:小王叔叔的博客支持:点赞👍关注✔️收藏💖1 概念百度百科中讲到卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。CNN由纽约大学的Yann Lecun于1998年提出,其本质是一个... 主页:小王叔叔的博客支持:点赞👍关注✔️收藏💖1 概念百度百科中讲到卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。CNN由纽约大学的Yann Lecun于1998年提出,其本质是一个...
- 🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题🍊往期回顾:凸优化理论基础1–仿射集 凸优化理论基础2——凸集和锥🍊近期目标:拥有5000粉丝🍊支持小苏:点赞👍🏼、收藏⭐、留言📩@[TOC] 前言 先来看看题目的中文解释叭,即在自动驾驶环境中使用CNN-Based融合视觉和激光雷达进行物体分类。我们常见的物体分类算法大多是纯视觉的,那么今天我分享的文章呢,... 🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题🍊往期回顾:凸优化理论基础1–仿射集 凸优化理论基础2——凸集和锥🍊近期目标:拥有5000粉丝🍊支持小苏:点赞👍🏼、收藏⭐、留言📩@[TOC] 前言 先来看看题目的中文解释叭,即在自动驾驶环境中使用CNN-Based融合视觉和激光雷达进行物体分类。我们常见的物体分类算法大多是纯视觉的,那么今天我分享的文章呢,...
- 🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题🍊往期回顾:基于pytorch搭建VGGNet神经网络用于花类识别 基于pytorch搭建AlexNet神经网络用于花类识别🍊近期目标:拥有5000粉丝🍊支持小苏:点赞👍🏼、收藏⭐、留言📩@[toc] 基于pytorch搭建ResNet神经网络用于花类识别 写在前面 这一系列已经写了好几篇了,这篇结束后可能就会... 🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题🍊往期回顾:基于pytorch搭建VGGNet神经网络用于花类识别 基于pytorch搭建AlexNet神经网络用于花类识别🍊近期目标:拥有5000粉丝🍊支持小苏:点赞👍🏼、收藏⭐、留言📩@[toc] 基于pytorch搭建ResNet神经网络用于花类识别 写在前面 这一系列已经写了好几篇了,这篇结束后可能就会...
- 🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题🍊往期回顾:卡尔曼滤波系列1——卡尔曼滤波 基于pytorch搭建AlexNet神经网络用于花类识别🍊近期目标:拥有5000粉丝🍊支持小苏:点赞👍🏼、收藏⭐、留言📩@[toc] 基于pytorch搭建GoogleNet神经网络用于花类识别 写在前面 前面已经出过基于pytorch搭建AlexNet神经网络... 🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题🍊往期回顾:卡尔曼滤波系列1——卡尔曼滤波 基于pytorch搭建AlexNet神经网络用于花类识别🍊近期目标:拥有5000粉丝🍊支持小苏:点赞👍🏼、收藏⭐、留言📩@[toc] 基于pytorch搭建GoogleNet神经网络用于花类识别 写在前面 前面已经出过基于pytorch搭建AlexNet神经网络...
- 🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题🍊往期回顾:卡尔曼滤波系列1——卡尔曼滤波 基于pytorch搭建AlexNet神经网络用于花类识别🍊近期目标:拥有5000粉丝🍊支持小苏:点赞👍🏼、收藏⭐、留言📩@[toc] 基于pytorch搭建VGGNet神经网络用于花类识别 写在前面 上一篇写过基于pytorch搭建AlexNet神经网络用于花... 🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题🍊往期回顾:卡尔曼滤波系列1——卡尔曼滤波 基于pytorch搭建AlexNet神经网络用于花类识别🍊近期目标:拥有5000粉丝🍊支持小苏:点赞👍🏼、收藏⭐、留言📩@[toc] 基于pytorch搭建VGGNet神经网络用于花类识别 写在前面 上一篇写过基于pytorch搭建AlexNet神经网络用于花...
- 🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题🍊往期回顾:卡尔曼滤波系列1——卡尔曼滤波 张氏标定法原理详解🍊近期目标:拥有5000粉丝🍊支持小苏:点赞👍🏼、收藏⭐、留言📩@[toc] 基于pytorch搭建AlexNet神经网络用于花类识别 写在前面 最近打算出一个基于pytorch搭建各种经典神经网络的系列。首先先谈谈关于这部分你需要哪些先验知识... 🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题🍊往期回顾:卡尔曼滤波系列1——卡尔曼滤波 张氏标定法原理详解🍊近期目标:拥有5000粉丝🍊支持小苏:点赞👍🏼、收藏⭐、留言📩@[toc] 基于pytorch搭建AlexNet神经网络用于花类识别 写在前面 最近打算出一个基于pytorch搭建各种经典神经网络的系列。首先先谈谈关于这部分你需要哪些先验知识...
- 主要讲述深度学习相关的基础知识,其中包括深度学习的发展历程、深度学习神经网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。 主要讲述深度学习相关的基础知识,其中包括深度学习的发展历程、深度学习神经网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。
- 一个生物神经细胞的功能比较简单,而人工神经元只是生物神经细胞的理想化和简单实现,功能更加简单,要想模拟人的脑力,需要很多神经元一起协作来完成复杂的功能。这样通过一定的连接方式或信息传递方式进行协作的神经元可以看成一个网络,就是神经网络。 神经网络的核心组件是层,它是一种数据处理模块,可以将它看出数据过滤器,大多数深度学习都是将简单的层链接起来,从而实现数据蒸馏。 一个生物神经细胞的功能比较简单,而人工神经元只是生物神经细胞的理想化和简单实现,功能更加简单,要想模拟人的脑力,需要很多神经元一起协作来完成复杂的功能。这样通过一定的连接方式或信息传递方式进行协作的神经元可以看成一个网络,就是神经网络。 神经网络的核心组件是层,它是一种数据处理模块,可以将它看出数据过滤器,大多数深度学习都是将简单的层链接起来,从而实现数据蒸馏。
- 朴素贝叶斯算法输入:样本集合D={(x_1,y_1),(x_2,y_2)~(x_m,y_m);待预测样本x;样本标记的所有可能取值{c_1,c_2,c_3~c_k};样本输入变量X的每个属性变量X^i的所有可能取值{a_i1,a_i2,~,a_iAi};输出:待预测样本x所属的类别1.计算标记为c_k的样本出现概率。2.计算标记c_k的样本,其X^i分量的属性值为a_ip的概率。3.根据上... 朴素贝叶斯算法输入:样本集合D={(x_1,y_1),(x_2,y_2)~(x_m,y_m);待预测样本x;样本标记的所有可能取值{c_1,c_2,c_3~c_k};样本输入变量X的每个属性变量X^i的所有可能取值{a_i1,a_i2,~,a_iAi};输出:待预测样本x所属的类别1.计算标记为c_k的样本出现概率。2.计算标记c_k的样本,其X^i分量的属性值为a_ip的概率。3.根据上...
- ❤❤❤ID3算法 ✅✅决策树的思想:给定一个集合,其中的每个样本由若干属性表示,决策树通过贪心的策略不断挑选最优的属性。常见的决策树算法有ID3,C4.5,CART算法等。 💤💤💤ID3算法: baseEntropy = self.calcShannonEnt(dataset) # 基础熵 num = len(dataset) # 样本总数 ... ❤❤❤ID3算法 ✅✅决策树的思想:给定一个集合,其中的每个样本由若干属性表示,决策树通过贪心的策略不断挑选最优的属性。常见的决策树算法有ID3,C4.5,CART算法等。 💤💤💤ID3算法: baseEntropy = self.calcShannonEnt(dataset) # 基础熵 num = len(dataset) # 样本总数 ...
- 1. 使用KNN进行电影类型预测: 给定训练样本集合如下:求解:testData={“老友记”: [29, 10, 2, “?片”]}。解题步骤:1.计算一个新样本与数据集中所有数据的距离2.按照距离大小进行递增排序3.选取距离最小的k个样本4.确定前k个样本所在类别出现的频率,并输出出现频率最高的类别import numpy as npdef createDataset(): ''... 1. 使用KNN进行电影类型预测: 给定训练样本集合如下:求解:testData={“老友记”: [29, 10, 2, “?片”]}。解题步骤:1.计算一个新样本与数据集中所有数据的距离2.按照距离大小进行递增排序3.选取距离最小的k个样本4.确定前k个样本所在类别出现的频率,并输出出现频率最高的类别import numpy as npdef createDataset(): ''...
- @[TOC](Python OpenCV浅析3种滤镜效果) 前言本篇文章要使用OpenCV、Numpy 和Math这3个工具包实现一个简单的滤镜编辑器。在这个滤镜编辑器中,包含了3种滤镜效果,它们分别是浮雕滤镜、雕刻滤镜和凸透镜滤镜。本篇文章将对目标图像(如图1所示)进行处理,使得目标图像分别呈现浮雕滤镜(如图2所示)、雕刻滤镜(如图3所示)和凸透镜滤镜(如图4所示)的视觉效果。 浮雕滤镜效... @[TOC](Python OpenCV浅析3种滤镜效果) 前言本篇文章要使用OpenCV、Numpy 和Math这3个工具包实现一个简单的滤镜编辑器。在这个滤镜编辑器中,包含了3种滤镜效果,它们分别是浮雕滤镜、雕刻滤镜和凸透镜滤镜。本篇文章将对目标图像(如图1所示)进行处理,使得目标图像分别呈现浮雕滤镜(如图2所示)、雕刻滤镜(如图3所示)和凸透镜滤镜(如图4所示)的视觉效果。 浮雕滤镜效...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签