- 本项目讲解了基于ERNIE信息抽取技术,对属性和关系的抽取涉及多对多抽取,主要是使用可ERNIEKIT组件,整体效果非常不错,当然追求小样本学习的可以参考之前UIE项目或者去官网看看paddlenlp最新的更新,对训练和部署进行了提速。 本项目讲解了基于ERNIE信息抽取技术,对属性和关系的抽取涉及多对多抽取,主要是使用可ERNIEKIT组件,整体效果非常不错,当然追求小样本学习的可以参考之前UIE项目或者去官网看看paddlenlp最新的更新,对训练和部署进行了提速。
- 本项目对PGL图学习系列项目进行整合方便大家后续学习,同时对图学习相关技术和业务落地侧进行归纳总结,以及对图网络开放数据集很多学者和机构发布了许多与图相关的任务。 本项目对PGL图学习系列项目进行整合方便大家后续学习,同时对图学习相关技术和业务落地侧进行归纳总结,以及对图网络开放数据集很多学者和机构发布了许多与图相关的任务。
- 图神经网络(Graph Neural Network)是一种专门处理图结构数据的神经网络,目前被广泛应用于推荐系统、金融风控、生物计算中。图神经网络的经典问题主要有三种,包括节点分类、连接预测和图分类三种,本次比赛是主要让同学们熟悉如何图神经网络处理节点分类问题。 图神经网络(Graph Neural Network)是一种专门处理图结构数据的神经网络,目前被广泛应用于推荐系统、金融风控、生物计算中。图神经网络的经典问题主要有三种,包括节点分类、连接预测和图分类三种,本次比赛是主要让同学们熟悉如何图神经网络处理节点分类问题。
- 为了实现可扩展的,健壮的和可重现的图学习研究,提出了Open Graph Benchmark (OGB)——具有规模大、领域广、任务类别多样化的现实图数据集。在特定于应用程序的使用案例的驱动下,对给定的数据集采用了实际的数据分割方法。通过广泛的基准实验,强调OGB数据集对于图学习模型在现实的数据分割方案下处理大规模图并进行准确的预测提出了重大挑战。总而言之,OGB为未来的研究提供了丰富的机会,以推 为了实现可扩展的,健壮的和可重现的图学习研究,提出了Open Graph Benchmark (OGB)——具有规模大、领域广、任务类别多样化的现实图数据集。在特定于应用程序的使用案例的驱动下,对给定的数据集采用了实际的数据分割方法。通过广泛的基准实验,强调OGB数据集对于图学习模型在现实的数据分割方案下处理大规模图并进行准确的预测提出了重大挑战。总而言之,OGB为未来的研究提供了丰富的机会,以推
- PGL图学习之图神经网络GraphSAGE、GIN图采样算法[系列七] PGL图学习之图神经网络GraphSAGE、GIN图采样算法[系列七]
- 介绍了异质图,利用pgl对metapath2vec、metapath2vec 进行了实现,并给出了多个框架版本的demo满足个性化需求 metapath2vec是一种用于异构网络中表示学习的算法框架,其中包含多种类型的节点和链接。给定异构图,metapath2vec 算法首先生成基于元路径的随机游走,然后使用 skipgram 模型训练语言模型。基于 PGL重现了 metapath2vec 算法 介绍了异质图,利用pgl对metapath2vec、metapath2vec 进行了实现,并给出了多个框架版本的demo满足个性化需求 metapath2vec是一种用于异构网络中表示学习的算法框架,其中包含多种类型的节点和链接。给定异构图,metapath2vec 算法首先生成基于元路径的随机游走,然后使用 skipgram 模型训练语言模型。基于 PGL重现了 metapath2vec 算法
- @[toc] 摘要 人群流量预测对交通管理和公共安全具有重要意义,同时也受到跨区域交通、事件、天气等复杂因素的影响,具有很大的挑战性。我们提出了一种基于深度学习的方法,称为ST-ResNet,用来集体预测城市每个区域的人群流入和流出。基于时空数据的独特属性,设计了一种端到端的ST-ResNet结构。更具体地说,我们使用残差神经网络框架来建模人群交通的时间距离、周期和趋势属性。针对每个特性,... @[toc] 摘要 人群流量预测对交通管理和公共安全具有重要意义,同时也受到跨区域交通、事件、天气等复杂因素的影响,具有很大的挑战性。我们提出了一种基于深度学习的方法,称为ST-ResNet,用来集体预测城市每个区域的人群流入和流出。基于时空数据的独特属性,设计了一种端到端的ST-ResNet结构。更具体地说,我们使用残差神经网络框架来建模人群交通的时间距离、周期和趋势属性。针对每个特性,...
- 实例分割-Mask R-CNN 模型本案例我们将进行实例分割模型Mask R-CNN的训练和测试的学习。在计算机视觉领域,实例分割(Instance Segmentation)是指从图像中识别物体的各个实例,并逐个将实例进行像素级标注的任务。实例分割技术在自动驾驶、医学影像、高精度GIS识别、3D建模辅助等领域有广泛的应用。本案例将对实例分割领域经典的Mask R-CNN模型进行简单介绍,... 实例分割-Mask R-CNN 模型本案例我们将进行实例分割模型Mask R-CNN的训练和测试的学习。在计算机视觉领域,实例分割(Instance Segmentation)是指从图像中识别物体的各个实例,并逐个将实例进行像素级标注的任务。实例分割技术在自动驾驶、医学影像、高精度GIS识别、3D建模辅助等领域有广泛的应用。本案例将对实例分割领域经典的Mask R-CNN模型进行简单介绍,...
- 6.Paddle Graph Learning (PGL)图学习之图游走类模型[系列四] 6.Paddle Graph Learning (PGL)图学习之图游走类模型[系列四]
- 3.词向量word2vec(图学习参考资料1) 3.词向量word2vec(图学习参考资料1)
- 本项目主要讲解了图的基本概念、图学习的概念、图的应用场景、以及图算法有哪些,最后介绍了PGL图学习框架,并给出demo实践。 本项目主要讲解了图的基本概念、图学习的概念、图的应用场景、以及图算法有哪些,最后介绍了PGL图学习框架,并给出demo实践。
- 这篇文章提出了一种注意力生成对抗网络(AttnGAN),它允许注意力驱动、多阶段细化细粒度文本到图像的生成,此外,还提出了一种深度注意多模态相似性模型来计算细粒度图像-文本匹配损失以训练生成器,进而生成更逼真的图像。 文章被2018年CVPR(IEEE Conference on Computer Vision and Pattern Recognition)会议收录。 这篇文章提出了一种注意力生成对抗网络(AttnGAN),它允许注意力驱动、多阶段细化细粒度文本到图像的生成,此外,还提出了一种深度注意多模态相似性模型来计算细粒度图像-文本匹配损失以训练生成器,进而生成更逼真的图像。 文章被2018年CVPR(IEEE Conference on Computer Vision and Pattern Recognition)会议收录。
- 本篇文章提出了叠加生成对抗网络(StackGAN)与条件增强,用于从文本合成现实图像,被2017年ICCV(International Conference on Computer Vision)会议录取。论文地址: https://arxiv.org/pdf/1612.03242.pdf代码地址: https://github.com/hanzhanggit/StackGAN本篇是精读这篇... 本篇文章提出了叠加生成对抗网络(StackGAN)与条件增强,用于从文本合成现实图像,被2017年ICCV(International Conference on Computer Vision)会议录取。论文地址: https://arxiv.org/pdf/1612.03242.pdf代码地址: https://github.com/hanzhanggit/StackGAN本篇是精读这篇...
- 近些年来,利用大规模的强标注数据,深度神经网络在物体识别、物体检测和物体分割任务中取得巨大进展。然而,强标注数据耗时又耗力。为此,自监督学习方法提出从大量的无标注数据中学习出高效的特征编码器,然后利用该特征编码器在小规模数据上进行强监督训练,以此达到和在大规模强标注数据上训练的模型相当的性能。基于对比式自监督学习方法的出发点为:从不同视角来观察图像,将来自同一图像的不同视角的图... 近些年来,利用大规模的强标注数据,深度神经网络在物体识别、物体检测和物体分割任务中取得巨大进展。然而,强标注数据耗时又耗力。为此,自监督学习方法提出从大量的无标注数据中学习出高效的特征编码器,然后利用该特征编码器在小规模数据上进行强监督训练,以此达到和在大规模强标注数据上训练的模型相当的性能。基于对比式自监督学习方法的出发点为:从不同视角来观察图像,将来自同一图像的不同视角的图...
- 本文简要介绍NeurIPS 2022录用的论文“Bridging the Gap Between Vision Transformers and Convolutional Neural Networks on Small Datasets”的主要工作。该论文旨在通过增强视觉Transformer中的归纳偏置来提升其在小数据集上从随机初始化开始训练的识别性能。 本文简要介绍NeurIPS 2022录用的论文“Bridging the Gap Between Vision Transformers and Convolutional Neural Networks on Small Datasets”的主要工作。该论文旨在通过增强视觉Transformer中的归纳偏置来提升其在小数据集上从随机初始化开始训练的识别性能。
上滑加载中
推荐直播
-
基于开源鸿蒙+海思星闪开发板:嵌入式系统开发实战(Day1)
2025/03/29 周六 09:00-18:00
华为开发者布道师
本次为期两天的课程将深入讲解OpenHarmony操作系统及其与星闪技术的结合应用,涵盖WS63E星闪开发板的详细介绍、“OpenHarmony+星闪”的创新实践、实验环境搭建以及编写首个“Hello World”程序等内容,旨在帮助学员全面掌握相关技术并进行实际操作
回顾中 -
基于开源鸿蒙+海思星闪开发板:嵌入式系统开发实战(Day2)
2025/03/30 周日 09:00-12:00
华为开发者布道师
本次为期两天的课程将深入讲解OpenHarmony操作系统及其与星闪技术的结合应用,涵盖WS63E星闪开发板的详细介绍、“OpenHarmony+星闪”的创新实践、实验环境搭建以及编写首个“Hello World”程序等内容,旨在帮助学员全面掌握相关技术并进行实际操作
回顾中 -
从AI基础到昇腾:大模型初探、DeepSeek解析与昇腾入门
2025/04/02 周三 16:00-17:30
不易 / 华为云学堂技术讲师
昇腾是华为研发的AI芯片,其具有哪些能力?我们如何基于其进行开发?本期直播将从AI以及大模型基础知识开始,介绍人工智能核心概念、昇腾AI基础软硬件平台以及昇腾专区,旨在为零基础或入门级学习者搭建从AI基础知识到昇腾技术的完整学习路径。
回顾中
热门标签