- opencv 调onnx https://github.com/Star-Clouds/CenterFace/blob/master/prj-python/centerface.py ncnn调,比如: https://github.com/moli232777144/mtcnn_ncnn/tree/master/src opencv 调onnx https://github.com/Star-Clouds/CenterFace/blob/master/prj-python/centerface.py ncnn调,比如: https://github.com/moli232777144/mtcnn_ncnn/tree/master/src
- 你的模型到底有多少参数,每秒的浮点运算到底有多少,这些你都知道吗?近日,GitHub 开源了一个小工具,它可以统计 PyTorch 模型的参数量与每秒浮点运算数(FLOPs)。有了这两种信息,模型大小控制也就更合理了。 其实模型的参数量好算,但浮点运算数并不好确定,我们一般也就根据参数量直接估计计算量了。但是像卷积之类的运算,它的参数量比较小,但是运算量非常... 你的模型到底有多少参数,每秒的浮点运算到底有多少,这些你都知道吗?近日,GitHub 开源了一个小工具,它可以统计 PyTorch 模型的参数量与每秒浮点运算数(FLOPs)。有了这两种信息,模型大小控制也就更合理了。 其实模型的参数量好算,但浮点运算数并不好确定,我们一般也就根据参数量直接估计计算量了。但是像卷积之类的运算,它的参数量比较小,但是运算量非常...
- KNN、MOG2和GMG 好像能判断物体移开,花屏效果不好,mouse也不能检测。 mog2: # coding:utf-8 import cv2 # 获取摄像头对象cap = cv2.VideoCapture(0)# 背景分割器对象mog = cv2.createBackgroundSubtractorMOG2() while True: ret, f... KNN、MOG2和GMG 好像能判断物体移开,花屏效果不好,mouse也不能检测。 mog2: # coding:utf-8 import cv2 # 获取摄像头对象cap = cv2.VideoCapture(0)# 背景分割器对象mog = cv2.createBackgroundSubtractorMOG2() while True: ret, f...
- 64*64的分类网络,比pelee收敛慢很多 这个网络用的relue,初步测试relue6好像没有relu效果好 LeakyReLU开始效果也不是特别好 很感谢这个作者,写的很好 https://zhuanlan.zhihu.com/p/76491446 5个月之前更新了:用的vgg16 vgg16 1070上 batch:4 时间3ms htt... 64*64的分类网络,比pelee收敛慢很多 这个网络用的relue,初步测试relue6好像没有relu效果好 LeakyReLU开始效果也不是特别好 很感谢这个作者,写的很好 https://zhuanlan.zhihu.com/p/76491446 5个月之前更新了:用的vgg16 vgg16 1070上 batch:4 时间3ms htt...
- 内积就是点乘,卷积先取反。 import numpy as np bb=[1,2]cc=[2,3] aa=np.dot(bb,cc) print(aa) dd= np.convolve([2,1],cc,'valid')print(dd) dd= np.convolve(bb,cc,'same')print(dd) dd= np.convolve(bb,cc,'ful... 内积就是点乘,卷积先取反。 import numpy as np bb=[1,2]cc=[2,3] aa=np.dot(bb,cc) print(aa) dd= np.convolve([2,1],cc,'valid')print(dd) dd= np.convolve(bb,cc,'same')print(dd) dd= np.convolve(bb,cc,'ful...
- 反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是: (1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程; (2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值... 反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是: (1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程; (2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值...
- 数字信号处理的主要数学工具是傅里叶变换.而傅里叶变换是研究整个时间域和频率域的关系。 快速傅里叶变换假定了时间信号是周期无限的。但在分析时,我们往往只截取其中的一部分,因此需要加窗以减小泄露。窗函数可以加在时域,也可以加在频域上,但在时域上加窗更为普遍。 不过,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做... 数字信号处理的主要数学工具是傅里叶变换.而傅里叶变换是研究整个时间域和频率域的关系。 快速傅里叶变换假定了时间信号是周期无限的。但在分析时,我们往往只截取其中的一部分,因此需要加窗以减小泄露。窗函数可以加在时域,也可以加在频域上,但在时域上加窗更为普遍。 不过,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做...
- pytorch方法测试——卷积(二维) 测试代码: import torchimport torch.nn as nn m = nn.Conv2d(2, 2, 3, stride=2)input = torch.randn(1, 2, 5, 7)output = m(input) print("输入图片(2张):")print(input)print("卷积的权重:")p... pytorch方法测试——卷积(二维) 测试代码: import torchimport torch.nn as nn m = nn.Conv2d(2, 2, 3, stride=2)input = torch.randn(1, 2, 5, 7)output = m(input) print("输入图片(2张):")print(input)print("卷积的权重:")p...
- 机器学习:一步步教你理解反向传播方法 时间 2016-09-13 00:35:59 Yong Yuan's blog 原文 http://yongyuan.name/blog/back-propagtion.html 主题 数据挖掘 ... 机器学习:一步步教你理解反向传播方法 时间 2016-09-13 00:35:59 Yong Yuan's blog 原文 http://yongyuan.name/blog/back-propagtion.html 主题 数据挖掘 ...
- http://blog.sina.com.cn/s/blog_7445c2940102wmrp.html 多维卷积与一维卷积的统一性(运算篇) 转载 2016-10-16 16:00:31 标签: 卷积 二维卷积 高维卷积 数学运算 信号与系统 本篇博文本来是想在下一篇博文中顺带提一句的,结果越写越多,那么索性就单独... http://blog.sina.com.cn/s/blog_7445c2940102wmrp.html 多维卷积与一维卷积的统一性(运算篇) 转载 2016-10-16 16:00:31 标签: 卷积 二维卷积 高维卷积 数学运算 信号与系统 本篇博文本来是想在下一篇博文中顺带提一句的,结果越写越多,那么索性就单独...
- 前面是max_pool第二个参数是卷积核,第三个参数是对应步长, import tensorflow as tf sess=tf.Session() x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) x = tf.reshape(x, [1, 3, 3, 1]) # give a shap... 前面是max_pool第二个参数是卷积核,第三个参数是对应步长, import tensorflow as tf sess=tf.Session() x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) x = tf.reshape(x, [1, 3, 3, 1]) # give a shap...
- 全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1x1的卷积;而前层是卷... 全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1x1的卷积;而前层是卷...
- 全卷积网络(FCN)与图像分割 从图像分类到图像分割 卷积神经网络(CNN)自2012年以来,在图像分类和图像检测等方面取得了巨大的成就和广泛的应用。 CNN的强大之处在于它的多层结构能自动学习特征,并且可以学习到多个层次的特征:较浅的卷积层感知域较小,学习到一些局部区域的特征;较深的卷积层具有较大的感知域,能够学习到更加抽象一些... 全卷积网络(FCN)与图像分割 从图像分类到图像分割 卷积神经网络(CNN)自2012年以来,在图像分类和图像检测等方面取得了巨大的成就和广泛的应用。 CNN的强大之处在于它的多层结构能自动学习特征,并且可以学习到多个层次的特征:较浅的卷积层感知域较小,学习到一些局部区域的特征;较深的卷积层具有较大的感知域,能够学习到更加抽象一些...
- LightCNN https://github.com/AlfredXiangWu/LightCNN 文章中提出了一种 Light CNN架构的卷积神经网络,适用于有大量噪声的人脸识别数据集; 提出了 maxout 的变体,叫做 Max-Feature-Map (MFM) maxout 使用多个特征图进行任意凸激活函数的线性... LightCNN https://github.com/AlfredXiangWu/LightCNN 文章中提出了一种 Light CNN架构的卷积神经网络,适用于有大量噪声的人脸识别数据集; 提出了 maxout 的变体,叫做 Max-Feature-Map (MFM) maxout 使用多个特征图进行任意凸激活函数的线性...
- Group Convolution分组卷积,最早见于AlexNet——2012年Imagenet的冠军方法,Group Convolution被用来切分网络,使其在2个GPU上并行运行,AlexNet网络结构如下: Convolution VS Group Convolution 在介绍Group Convolution前,先回顾下常规卷积... Group Convolution分组卷积,最早见于AlexNet——2012年Imagenet的冠军方法,Group Convolution被用来切分网络,使其在2个GPU上并行运行,AlexNet网络结构如下: Convolution VS Group Convolution 在介绍Group Convolution前,先回顾下常规卷积...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签