- DL:神经网络所有模型(包括DNN、CNN、RNN等)的简介(概览)、网络结构简介、使用场景对比之详细攻略 目录 神经网络所有模型的简介及其总结 神经网络所有模型的简介(概览) 神经网络算法之DNN、CNN、RNN使用场景对比 神经网络所有模型的简介及其总结 FF【前馈神经网络】和 RNN【循环神经网络】是... DL:神经网络所有模型(包括DNN、CNN、RNN等)的简介(概览)、网络结构简介、使用场景对比之详细攻略 目录 神经网络所有模型的简介及其总结 神经网络所有模型的简介(概览) 神经网络算法之DNN、CNN、RNN使用场景对比 神经网络所有模型的简介及其总结 FF【前馈神经网络】和 RNN【循环神经网络】是...
- DL之DNN:基于Tensorflow框架对神经网络算法进行参数初始化的常用九大函数及其使用案例 目录 基于Tensorflow框架对神经网络算法进行初始化的常用函数及其使用案例 1、初始化的常用函数 DL之DNN:基于Tensorflow框架对神经网络算法进行参数初始化的常用九大函数及其使用案例 目录 基于Tensorflow框架对神经网络算法进行初始化的常用函数及其使用案例 1、初始化的常用函数
- 成功解决没有tf.nn.rnn_cell属性 目录 解决问题 解决思路 解决方法 解决问题 没有tf.nn.rnn_cell属性 解决思路 由于不同的TensorFlow版本之间某些函数的用法引起的错误 没有tf.nn.rnn_cell属性 ... 成功解决没有tf.nn.rnn_cell属性 目录 解决问题 解决思路 解决方法 解决问题 没有tf.nn.rnn_cell属性 解决思路 由于不同的TensorFlow版本之间某些函数的用法引起的错误 没有tf.nn.rnn_cell属性 ...
- DL之DeconvNet:DeconvNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 DeconvNet算法的简介(论文介绍) 0、实验结果 DeconvNet算法的架构详解 DeconvNet算法的案例应用 相关文章DL之DeconvNet:DeconvNet算法的简... DL之DeconvNet:DeconvNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 DeconvNet算法的简介(论文介绍) 0、实验结果 DeconvNet算法的架构详解 DeconvNet算法的案例应用 相关文章DL之DeconvNet:DeconvNet算法的简...
- DL:神经网络算法简介之Affine 层的简介、使用方法、代码实现之详细攻略 目录 Affine 层的简介 批版本的Affine 层 Affine 层的使用方法 Affine 层的代码实现 Affine 层的简介 Affine层:神经网络的正向传播中,进行的矩阵的乘积运算,在几何学领域被称为“仿射变换”。几何中,... DL:神经网络算法简介之Affine 层的简介、使用方法、代码实现之详细攻略 目录 Affine 层的简介 批版本的Affine 层 Affine 层的使用方法 Affine 层的代码实现 Affine 层的简介 Affine层:神经网络的正向传播中,进行的矩阵的乘积运算,在几何学领域被称为“仿射变换”。几何中,...
- DL之FAN:FAN人脸对齐网络(Face Alignment depth Network)的论文简介、案例应用之详细攻略 目录 FAN人脸对齐网络(Face Alignment depth Network)的论文简介 FAN人脸对齐网络(Face Alignment depth Network)的案例应用 相关文章Paper:《How far are ... DL之FAN:FAN人脸对齐网络(Face Alignment depth Network)的论文简介、案例应用之详细攻略 目录 FAN人脸对齐网络(Face Alignment depth Network)的论文简介 FAN人脸对齐网络(Face Alignment depth Network)的案例应用 相关文章Paper:《How far are ...
- AI:神经网络调参(数据、层数、batch大小,学习率+激活函数+正则化+分类/回归)并进行结果可视化 目录 神经网络调参(数据、层数、batch大小,学习率+激活函数+正则化+分类/回归)并进行结果可视化 1、复杂数据采用多层多个神经网络,才可以得到更好的分类 神经网络调参(数据、层数... AI:神经网络调参(数据、层数、batch大小,学习率+激活函数+正则化+分类/回归)并进行结果可视化 目录 神经网络调参(数据、层数、batch大小,学习率+激活函数+正则化+分类/回归)并进行结果可视化 1、复杂数据采用多层多个神经网络,才可以得到更好的分类 神经网络调参(数据、层数...
- DL之DNN:自定义2层神经网络TwoLayerNet模型(封装为层级结构)利用MNIST数据集进行训练、预测 导读 计算图在神经网络算法中的作用。计算图的节点是由局部计算构成的。局部计算构成全局计算。计算图的正向传播进行一般的计算。通过计算图的反向传播,可以计算各个节点的导数。 目录 输出结果 设计思路 核心代码 ... DL之DNN:自定义2层神经网络TwoLayerNet模型(封装为层级结构)利用MNIST数据集进行训练、预测 导读 计算图在神经网络算法中的作用。计算图的节点是由局部计算构成的。局部计算构成全局计算。计算图的正向传播进行一般的计算。通过计算图的反向传播,可以计算各个节点的导数。 目录 输出结果 设计思路 核心代码 ...
- DL之CNN优化技术:卷积神经网络算法简介之特有的优化技术及其代码实现——im2col技术等技术 目录 im2col技术 im2col简介 im2col代码实现 im2col技术 im2col简介 1、im2col 的示意图 2、将滤波器的应用区域从头开始依次横向展开为1列 3、卷积运算的滤波器处理的细节:将滤波器纵向... DL之CNN优化技术:卷积神经网络算法简介之特有的优化技术及其代码实现——im2col技术等技术 目录 im2col技术 im2col简介 im2col代码实现 im2col技术 im2col简介 1、im2col 的示意图 2、将滤波器的应用区域从头开始依次横向展开为1列 3、卷积运算的滤波器处理的细节:将滤波器纵向...
- DL之DCGAN:基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成 目录 基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成 设计思路 输出结果 核心代码 相关文章DL之DCGAN:基于... DL之DCGAN:基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成 目录 基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成 设计思路 输出结果 核心代码 相关文章DL之DCGAN:基于...
- MXNet之CNN:自定义CNN-OCR算法训练车牌数据集(umpy.ndarray格式数据)的模型实现一张新车牌照片字符预测 导读 利用自定义CNN-OCR算法,来训练车牌数据集(umpy.ndarray格式数据),然后实现车牌照片字符识别,最后进行一张新车牌照片字符预测。 目录 输出结果 设计思路 核心代码 输出结果 ... MXNet之CNN:自定义CNN-OCR算法训练车牌数据集(umpy.ndarray格式数据)的模型实现一张新车牌照片字符预测 导读 利用自定义CNN-OCR算法,来训练车牌数据集(umpy.ndarray格式数据),然后实现车牌照片字符识别,最后进行一张新车牌照片字符预测。 目录 输出结果 设计思路 核心代码 输出结果 ...
- MXNet之CNN:自定义CNN-OCR算法训练车牌数据集(umpy.ndarray格式数据)实现车牌照片字符识别并评估模型 导读 利用CNN-OCR算法训练车牌数据集评估模型并实现车牌照片字符识别,训练中的车牌数据集是Numpy.ndarray格式数据,当然也可以进一步生成图片,方便直接查看。 目录 输出结果 设计思路 核心代码 更多输出 ... MXNet之CNN:自定义CNN-OCR算法训练车牌数据集(umpy.ndarray格式数据)实现车牌照片字符识别并评估模型 导读 利用CNN-OCR算法训练车牌数据集评估模型并实现车牌照片字符识别,训练中的车牌数据集是Numpy.ndarray格式数据,当然也可以进一步生成图片,方便直接查看。 目录 输出结果 设计思路 核心代码 更多输出 ...
- DL之CNN:卷积神经网络算法简介之原理简介——CNN网络的3D可视化(LeNet-5为例可视化) CNN网络的3D可视化 3D可视化地址:http://scs.ryerson.ca/~aharley/vis/conv/ 1、LeNet-5为例可视化 &... DL之CNN:卷积神经网络算法简介之原理简介——CNN网络的3D可视化(LeNet-5为例可视化) CNN网络的3D可视化 3D可视化地址:http://scs.ryerson.ca/~aharley/vis/conv/ 1、LeNet-5为例可视化 &...
- DL之MobileNet:MobileNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 MobileNet算法的简介(论文介绍) 1、研究背景 2、传统的模型轻量化常用的方法 3、MobileNet 模型可应用于各种识别任务,以实现高效的设备智能 MobileNet算法的架构详解 5、实验... DL之MobileNet:MobileNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 MobileNet算法的简介(论文介绍) 1、研究背景 2、传统的模型轻量化常用的方法 3、MobileNet 模型可应用于各种识别任务,以实现高效的设备智能 MobileNet算法的架构详解 5、实验...
- DL之HNN:Hopfield神经网络(HNN之DHNN、CHNN)的相关论文、简介、使用案例之详细攻略 导读:Hopfield神经网络(HNN)是一种具有循环、递归特性,结合存储和二元系统的神经网络。由约翰·霍普菲尔德在1982年发明。对于一个Hopfield神经网络来说,关键在于确定它在稳定条件下的权系数。Hopfield神经网络分为离散型和连续型两种,主要差别在... DL之HNN:Hopfield神经网络(HNN之DHNN、CHNN)的相关论文、简介、使用案例之详细攻略 导读:Hopfield神经网络(HNN)是一种具有循环、递归特性,结合存储和二元系统的神经网络。由约翰·霍普菲尔德在1982年发明。对于一个Hopfield神经网络来说,关键在于确定它在稳定条件下的权系数。Hopfield神经网络分为离散型和连续型两种,主要差别在...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签