- 论文链接:https://arxiv.org/pdf/2201.03545.pdf 代码链接:https://github.com/facebookresearch/ConvNeXt 最小的模型100m ConvNeXt-S224x22478.722M4.3G Abstract ViT伴随着视觉的“20年代”咆哮而来,迅速的碾压... 论文链接:https://arxiv.org/pdf/2201.03545.pdf 代码链接:https://github.com/facebookresearch/ConvNeXt 最小的模型100m ConvNeXt-S224x22478.722M4.3G Abstract ViT伴随着视觉的“20年代”咆哮而来,迅速的碾压...
- 吴恩达老师机器学习视频课程笔记简记 1 第9章节 课时64: 通常除了输入层和输出层,其他层都成为 隐藏层 定义基本的神经网络 课时65: 前向传播: 依次计算激活项,从输入层到隐藏层再到输出... 吴恩达老师机器学习视频课程笔记简记 1 第9章节 课时64: 通常除了输入层和输出层,其他层都成为 隐藏层 定义基本的神经网络 课时65: 前向传播: 依次计算激活项,从输入层到隐藏层再到输出...
- 仿射层(Affine Layer) 神经网络中的一个全连接层。仿射(Affine)的意思是前面一层中的每一个神经元都连接到当前层中的每一个神经元。在许多方面,这是神经网络的「标准」层。仿射层通常被加在卷... 仿射层(Affine Layer) 神经网络中的一个全连接层。仿射(Affine)的意思是前面一层中的每一个神经元都连接到当前层中的每一个神经元。在许多方面,这是神经网络的「标准」层。仿射层通常被加在卷...
- 文章目录 I . 神经网络 ( Neural Networks ) 简介II . 神经网络三要素III . 神经网络拓扑结构IV . 神经网络连接方式V . 神经网络学习规则VI . 浅层神经网络... 文章目录 I . 神经网络 ( Neural Networks ) 简介II . 神经网络三要素III . 神经网络拓扑结构IV . 神经网络连接方式V . 神经网络学习规则VI . 浅层神经网络...
- 简介 该论文的作者声称核心算法实现了对于实时应用程序而言足够低的在线分类错误率(DER) – 在NIST SRE 2000 CALLHOME基准测试中为7.6%,而谷歌之前的方法为8.8%DER 的代码... 简介 该论文的作者声称核心算法实现了对于实时应用程序而言足够低的在线分类错误率(DER) – 在NIST SRE 2000 CALLHOME基准测试中为7.6%,而谷歌之前的方法为8.8%DER 的代码...
- 概要 本文介绍了首个用于实时立体匹配的端到端深度架构StereoNet,该架构可在NVidia Titan X上以60fps运行,生成高质量、边缘保持、无量化的视差图。本文的一个关键观点是,该网络的... 概要 本文介绍了首个用于实时立体匹配的端到端深度架构StereoNet,该架构可在NVidia Titan X上以60fps运行,生成高质量、边缘保持、无量化的视差图。本文的一个关键观点是,该网络的...
- 简 介: 本文选取了2021年人工神经网络第四次作业学生提交的作业。供交流使用。 关键词: 人工神经网络 ... 简 介: 本文选取了2021年人工神经网络第四次作业学生提交的作业。供交流使用。 关键词: 人工神经网络 ...
- 这个是收录: GitHub - MarkMoHR/Awesome-Edge-Detection-Papers: A collection of edge/contour/boundary detection papers and toolbox. 这个模型比较小,效果还可以: GitHub - zhuoinoulu/p... 这个是收录: GitHub - MarkMoHR/Awesome-Edge-Detection-Papers: A collection of edge/contour/boundary detection papers and toolbox. 这个模型比较小,效果还可以: GitHub - zhuoinoulu/p...
- 构建一个字母ABC的手写识别网络, 要求给出算法误差收敛曲线,所给程序要有图片导入接口。 其中A,B,C都代表label,三个文件夹存在具体的图片。只要是这样类型的,直接套下面模板。 impo... 构建一个字母ABC的手写识别网络, 要求给出算法误差收敛曲线,所给程序要有图片导入接口。 其中A,B,C都代表label,三个文件夹存在具体的图片。只要是这样类型的,直接套下面模板。 impo...
- 在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一。CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结。 在学习CNN前,推荐大家先学习DNN的... 在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一。CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结。 在学习CNN前,推荐大家先学习DNN的...
- 什么是神经网络? 神经网络是由很多神经元组成的,首先我们看一下,什么是神经元 上面这个图表示的就是一个神经元,我们不管其它书上说的那些什么树突,轴突的。我用个比较粗浅的解释,可能不太全面科学,但对初学者很容易理解: 1、我们把输入信号看成你在matlab中需要输入的数据,输进去神经网络后 2、这些数据的每一个都会被乘个数,即权值... 什么是神经网络? 神经网络是由很多神经元组成的,首先我们看一下,什么是神经元 上面这个图表示的就是一个神经元,我们不管其它书上说的那些什么树突,轴突的。我用个比较粗浅的解释,可能不太全面科学,但对初学者很容易理解: 1、我们把输入信号看成你在matlab中需要输入的数据,输进去神经网络后 2、这些数据的每一个都会被乘个数,即权值...
- 1.背景 今后博主会每周定时更新机器学习算法及其python的简单实现。今天学习的算法是KNN近邻算法。KNN算法是一个监督学习分类器类别的算法。 什么是监督学习,什么又是无监督学习呢。监督学习就是我们知道目标向量... 1.背景 今后博主会每周定时更新机器学习算法及其python的简单实现。今天学习的算法是KNN近邻算法。KNN算法是一个监督学习分类器类别的算法。 什么是监督学习,什么又是无监督学习呢。监督学习就是我们知道目标向量...
- 由于本人这段时间在学习数据挖掘的知识,学习了人工神经网络刚好就把学习的一些笔记弄出来,也为以后自己回头看的时候方便些。 神经网络学习方法对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方法。对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效学习方法。人工神经网络的研究在一定程度上受... 由于本人这段时间在学习数据挖掘的知识,学习了人工神经网络刚好就把学习的一些笔记弄出来,也为以后自己回头看的时候方便些。 神经网络学习方法对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方法。对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效学习方法。人工神经网络的研究在一定程度上受...
- 前言 神经网络里面主要就是单层神经网络学习和多层神经网络学习,涉及到知识点主要就是感知器,线性分割,影藏层,权重校正,误差的平方和等知识点。 感知器:是神经网络最简单的形式,单层双输入感知器的结构如下: 感知器的作用是将输入分类,超平面有线性分割函数定义: 下图是感知器的线性分割:两输入感知器和三输入感知器的情形。 ... 前言 神经网络里面主要就是单层神经网络学习和多层神经网络学习,涉及到知识点主要就是感知器,线性分割,影藏层,权重校正,误差的平方和等知识点。 感知器:是神经网络最简单的形式,单层双输入感知器的结构如下: 感知器的作用是将输入分类,超平面有线性分割函数定义: 下图是感知器的线性分割:两输入感知器和三输入感知器的情形。 ...
- 一.引入 K近邻算法作为数据挖掘十大经典算法之一,其算法思想可谓是intuitive,就是从训练集里找离预测点最近的K个样本来预测分类 因为算法思想简单,你可以用很多方法实现它,这时效率就是我们需要慎重考虑的事情,最简单的自然是求出测试样本和训练集所有点的距离然后排... 一.引入 K近邻算法作为数据挖掘十大经典算法之一,其算法思想可谓是intuitive,就是从训练集里找离预测点最近的K个样本来预测分类 因为算法思想简单,你可以用很多方法实现它,这时效率就是我们需要慎重考虑的事情,最简单的自然是求出测试样本和训练集所有点的距离然后排...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
回顾中
热门标签