- 目录 先来看机器学习: 什么是特征? 深度学习是表示学习的经典代表: 深度学习的过程: 深度学习与传统机器学习差别: 深度学习代表算法: 先来看机器学习: 机器学习是利用经验experience来改善 计算机系统自身的性能,通过经验获取知识knowledge。 以往都是人们向计算机输入知识,现在是通过经验的“特征”数据来产生模型model(传统的机器... 目录 先来看机器学习: 什么是特征? 深度学习是表示学习的经典代表: 深度学习的过程: 深度学习与传统机器学习差别: 深度学习代表算法: 先来看机器学习: 机器学习是利用经验experience来改善 计算机系统自身的性能,通过经验获取知识knowledge。 以往都是人们向计算机输入知识,现在是通过经验的“特征”数据来产生模型model(传统的机器...
- # -*- coding: utf-8 -*-import numpy as npfrom scipy.cluster.hierarchy import dendrogram, linkage, fclusterfrom matplotlib import pyplot as plt def hierarchy_cluster(data, method='average',... # -*- coding: utf-8 -*-import numpy as npfrom scipy.cluster.hierarchy import dendrogram, linkage, fclusterfrom matplotlib import pyplot as plt def hierarchy_cluster(data, method='average',...
- 1 K-mean基本概念 聚类分析是以相似性为基础,对数据集进行聚类划分,属于无监督学习(unsupervised learning)。 K-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式... 1 K-mean基本概念 聚类分析是以相似性为基础,对数据集进行聚类划分,属于无监督学习(unsupervised learning)。 K-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式...
- 来源:AI开发者 作为机器学习从业者,你需要知道概率分布相关的知识。这里有一份最常见的基本概率分布教程,大多数和使用 python 库进行深度学习有关。 概率分布概述 共轭意味着它有共轭分布的关系。 在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似... 来源:AI开发者 作为机器学习从业者,你需要知道概率分布相关的知识。这里有一份最常见的基本概率分布教程,大多数和使用 python 库进行深度学习有关。 概率分布概述 共轭意味着它有共轭分布的关系。 在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似...
- 0 统计量:描述数据特征 0.1 集中趋势衡量 均值,平均数,平均值,mean 中位数:将数据中的各个数值按照大小顺序排列,居于中间的变量,若是偶个数,取中间两个均值 众数:数据出现次数最多的书 0.2 离散程度衡量 方差 variance 标准差 standard deviation,方差的开二次方 1 回归问题和分类问题区别: 回归问题:Y变... 0 统计量:描述数据特征 0.1 集中趋势衡量 均值,平均数,平均值,mean 中位数:将数据中的各个数值按照大小顺序排列,居于中间的变量,若是偶个数,取中间两个均值 众数:数据出现次数最多的书 0.2 离散程度衡量 方差 variance 标准差 standard deviation,方差的开二次方 1 回归问题和分类问题区别: 回归问题:Y变...
- 目录 KITTI数据集简介与使用 数据集名称 Kitti Oxford RobotCar Cityscape Comma.ai Udacity BDDV CARLA GTA KITTI数据集简介与使用 http://blog.csdn.net/solomon1558/article/details/70173223 数据集名称... 目录 KITTI数据集简介与使用 数据集名称 Kitti Oxford RobotCar Cityscape Comma.ai Udacity BDDV CARLA GTA KITTI数据集简介与使用 http://blog.csdn.net/solomon1558/article/details/70173223 数据集名称...
- Geoffrey Hinton等6位图灵奖得主亲临,百余位顶级学者邀请你加入群聊「2020北京智源大会」,深入系统探讨「人工智能的下一个十年」。 自2009年深度学习崛起以来,第三波人工智能浪潮席卷全球,推动了新一波技术革命。 在这波澜壮阔的11年,我们见证了技术突破、应用创新与产业变革。 技术上,深度学习首先带来计算机视觉、语音识别等领域的突破,让机器识别的... Geoffrey Hinton等6位图灵奖得主亲临,百余位顶级学者邀请你加入群聊「2020北京智源大会」,深入系统探讨「人工智能的下一个十年」。 自2009年深度学习崛起以来,第三波人工智能浪潮席卷全球,推动了新一波技术革命。 在这波澜壮阔的11年,我们见证了技术突破、应用创新与产业变革。 技术上,深度学习首先带来计算机视觉、语音识别等领域的突破,让机器识别的...
- batch 深度学习的优化算法,即梯度下降。有批梯度下降,随机梯度下降 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。使用batch梯度下降法时,每次迭代你都需要历遍整个训练集,这称为Batch gradient descent,批梯度下降。这个算法每个迭代需要处理大量训练样本,该算法的主要弊端在于特别是在训练样本数量巨大的时候,单次迭... batch 深度学习的优化算法,即梯度下降。有批梯度下降,随机梯度下降 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。使用batch梯度下降法时,每次迭代你都需要历遍整个训练集,这称为Batch gradient descent,批梯度下降。这个算法每个迭代需要处理大量训练样本,该算法的主要弊端在于特别是在训练样本数量巨大的时候,单次迭...
- 目录 1、MNIST 2、ImageNet 4、COCO 5、PASCAL VOC 6、FDDB 1、MNIST 深度学习领域的入门数据集,当前主流的深度学习框架几乎都将MNIST数据集的处理入门第一教程。MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28,数字放在一个归一化的、... 目录 1、MNIST 2、ImageNet 4、COCO 5、PASCAL VOC 6、FDDB 1、MNIST 深度学习领域的入门数据集,当前主流的深度学习框架几乎都将MNIST数据集的处理入门第一教程。MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28,数字放在一个归一化的、...
- 前馈神经网络 首先我先寻找了知乎中的一个介绍进行学习:https://www.zhihu.com/question/22553761/answer/126474394 来自知乎学者YJango的回答:https://www.zhihu.com/people/YJango,以及其它... 前馈神经网络 首先我先寻找了知乎中的一个介绍进行学习:https://www.zhihu.com/question/22553761/answer/126474394 来自知乎学者YJango的回答:https://www.zhihu.com/people/YJango,以及其它...
- 说说soft-nms和nms那些事 前言什么是非极大抑制?传统的非极大抑制产生的问题?soft-nms 前言 今天来介绍下非极大抑制。 什么是非极大抑制? 目标检测算法会输出多个检测边框,尤其是在真实目标周围会有很多置信度高的检测边框。为了去除重复的检测边框,达到每个物体有且只有一个检测结果的目的。非极大值抑制(Non-maximum suppre... 说说soft-nms和nms那些事 前言什么是非极大抑制?传统的非极大抑制产生的问题?soft-nms 前言 今天来介绍下非极大抑制。 什么是非极大抑制? 目标检测算法会输出多个检测边框,尤其是在真实目标周围会有很多置信度高的检测边框。为了去除重复的检测边框,达到每个物体有且只有一个检测结果的目的。非极大值抑制(Non-maximum suppre...
- 一、自编码器 自编码器(Autoencoder)是一种旨在将它们的输入复制到的输出的神经网络。他们通过将输入压缩成一种隐藏空间表示(latent-space representation),然后这种重构这种表示的输出进行工作。这种网络由两部分组成: 编码器:将输入压缩为潜在空间表示。可以用编码函数h = f(x)表示。 解码器:这部分旨在重构来自隐藏空间表示的输入。... 一、自编码器 自编码器(Autoencoder)是一种旨在将它们的输入复制到的输出的神经网络。他们通过将输入压缩成一种隐藏空间表示(latent-space representation),然后这种重构这种表示的输出进行工作。这种网络由两部分组成: 编码器:将输入压缩为潜在空间表示。可以用编码函数h = f(x)表示。 解码器:这部分旨在重构来自隐藏空间表示的输入。...
- 深度学习: 学习率 (learning rate) 作者:liulina603 致敬 原文:https://blog.csdn.net/liulina603/article/details/80604385 深度学习: 学习率 (learning rate) Intro... 深度学习: 学习率 (learning rate) 作者:liulina603 致敬 原文:https://blog.csdn.net/liulina603/article/details/80604385 深度学习: 学习率 (learning rate) Intro...
- 数据(Data):信息数据元素(Data Element):数据的基本单位,由若干数据项组成。数据项(Data Item):具有独立含义的最小单位。数据对象(Data Object):元素的集合数据结构(Data Structure):三要素(逻辑结构、存储结构、数据运算:增、删、改、查)逻辑结构:数据元素之间的关系(逻辑结构形式上用二元组,B=(K,R),K是结点的集... 数据(Data):信息数据元素(Data Element):数据的基本单位,由若干数据项组成。数据项(Data Item):具有独立含义的最小单位。数据对象(Data Object):元素的集合数据结构(Data Structure):三要素(逻辑结构、存储结构、数据运算:增、删、改、查)逻辑结构:数据元素之间的关系(逻辑结构形式上用二元组,B=(K,R),K是结点的集...
- 文/张志华近年来,人工智能的强势崛起,特别是去年AlphaGo和韩国九段棋手李世石的人机大战,让我们深刻地领略到了人工智能技术的巨大潜力。数据是载体,智能是目标,而机器学习是从数据通往智能的技术、方法途径。因此,机器学习是数据科学的核心,是现代人工智能的本质。通俗地说,机器学习就是从数据中挖掘出有价值的信息。数据本身是无意识的,它不能自动呈现出有用的信息。怎样才能找出有价值的东西呢?第一步要... 文/张志华近年来,人工智能的强势崛起,特别是去年AlphaGo和韩国九段棋手李世石的人机大战,让我们深刻地领略到了人工智能技术的巨大潜力。数据是载体,智能是目标,而机器学习是从数据通往智能的技术、方法途径。因此,机器学习是数据科学的核心,是现代人工智能的本质。通俗地说,机器学习就是从数据中挖掘出有价值的信息。数据本身是无意识的,它不能自动呈现出有用的信息。怎样才能找出有价值的东西呢?第一步要...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
苏州工业园区“华为云杯”2025人工智能应用创新大赛赛中直播
2025/08/21 周四 16:00-17:00
Vz 华为云AIoT技术布道师
本期直播将与您一起探讨如何基于华为云IoT平台全场景云服务,结合AI、鸿蒙、大数据等技术,打造有创新性,有竞争力的方案和产品。
回顾中
热门标签