- 来源:AI开发者 作为机器学习从业者,你需要知道概率分布相关的知识。这里有一份最常见的基本概率分布教程,大多数和使用 python 库进行深度学习有关。 概率分布概述 共轭意味着它有共轭分布的关系。 在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似... 来源:AI开发者 作为机器学习从业者,你需要知道概率分布相关的知识。这里有一份最常见的基本概率分布教程,大多数和使用 python 库进行深度学习有关。 概率分布概述 共轭意味着它有共轭分布的关系。 在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似...
- 0 统计量:描述数据特征 0.1 集中趋势衡量 均值,平均数,平均值,mean 中位数:将数据中的各个数值按照大小顺序排列,居于中间的变量,若是偶个数,取中间两个均值 众数:数据出现次数最多的书 0.2 离散程度衡量 方差 variance 标准差 standard deviation,方差的开二次方 1 回归问题和分类问题区别: 回归问题:Y变... 0 统计量:描述数据特征 0.1 集中趋势衡量 均值,平均数,平均值,mean 中位数:将数据中的各个数值按照大小顺序排列,居于中间的变量,若是偶个数,取中间两个均值 众数:数据出现次数最多的书 0.2 离散程度衡量 方差 variance 标准差 standard deviation,方差的开二次方 1 回归问题和分类问题区别: 回归问题:Y变...
- 目录 KITTI数据集简介与使用 数据集名称 Kitti Oxford RobotCar Cityscape Comma.ai Udacity BDDV CARLA GTA KITTI数据集简介与使用 http://blog.csdn.net/solomon1558/article/details/70173223 数据集名称... 目录 KITTI数据集简介与使用 数据集名称 Kitti Oxford RobotCar Cityscape Comma.ai Udacity BDDV CARLA GTA KITTI数据集简介与使用 http://blog.csdn.net/solomon1558/article/details/70173223 数据集名称...
- Geoffrey Hinton等6位图灵奖得主亲临,百余位顶级学者邀请你加入群聊「2020北京智源大会」,深入系统探讨「人工智能的下一个十年」。 自2009年深度学习崛起以来,第三波人工智能浪潮席卷全球,推动了新一波技术革命。 在这波澜壮阔的11年,我们见证了技术突破、应用创新与产业变革。 技术上,深度学习首先带来计算机视觉、语音识别等领域的突破,让机器识别的... Geoffrey Hinton等6位图灵奖得主亲临,百余位顶级学者邀请你加入群聊「2020北京智源大会」,深入系统探讨「人工智能的下一个十年」。 自2009年深度学习崛起以来,第三波人工智能浪潮席卷全球,推动了新一波技术革命。 在这波澜壮阔的11年,我们见证了技术突破、应用创新与产业变革。 技术上,深度学习首先带来计算机视觉、语音识别等领域的突破,让机器识别的...
- batch 深度学习的优化算法,即梯度下降。有批梯度下降,随机梯度下降 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。使用batch梯度下降法时,每次迭代你都需要历遍整个训练集,这称为Batch gradient descent,批梯度下降。这个算法每个迭代需要处理大量训练样本,该算法的主要弊端在于特别是在训练样本数量巨大的时候,单次迭... batch 深度学习的优化算法,即梯度下降。有批梯度下降,随机梯度下降 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。使用batch梯度下降法时,每次迭代你都需要历遍整个训练集,这称为Batch gradient descent,批梯度下降。这个算法每个迭代需要处理大量训练样本,该算法的主要弊端在于特别是在训练样本数量巨大的时候,单次迭...
- 目录 1、MNIST 2、ImageNet 4、COCO 5、PASCAL VOC 6、FDDB 1、MNIST 深度学习领域的入门数据集,当前主流的深度学习框架几乎都将MNIST数据集的处理入门第一教程。MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28,数字放在一个归一化的、... 目录 1、MNIST 2、ImageNet 4、COCO 5、PASCAL VOC 6、FDDB 1、MNIST 深度学习领域的入门数据集,当前主流的深度学习框架几乎都将MNIST数据集的处理入门第一教程。MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28,数字放在一个归一化的、...
- 前馈神经网络 首先我先寻找了知乎中的一个介绍进行学习:https://www.zhihu.com/question/22553761/answer/126474394 来自知乎学者YJango的回答:https://www.zhihu.com/people/YJango,以及其它... 前馈神经网络 首先我先寻找了知乎中的一个介绍进行学习:https://www.zhihu.com/question/22553761/answer/126474394 来自知乎学者YJango的回答:https://www.zhihu.com/people/YJango,以及其它...
- 说说soft-nms和nms那些事 前言什么是非极大抑制?传统的非极大抑制产生的问题?soft-nms 前言 今天来介绍下非极大抑制。 什么是非极大抑制? 目标检测算法会输出多个检测边框,尤其是在真实目标周围会有很多置信度高的检测边框。为了去除重复的检测边框,达到每个物体有且只有一个检测结果的目的。非极大值抑制(Non-maximum suppre... 说说soft-nms和nms那些事 前言什么是非极大抑制?传统的非极大抑制产生的问题?soft-nms 前言 今天来介绍下非极大抑制。 什么是非极大抑制? 目标检测算法会输出多个检测边框,尤其是在真实目标周围会有很多置信度高的检测边框。为了去除重复的检测边框,达到每个物体有且只有一个检测结果的目的。非极大值抑制(Non-maximum suppre...
- 一、自编码器 自编码器(Autoencoder)是一种旨在将它们的输入复制到的输出的神经网络。他们通过将输入压缩成一种隐藏空间表示(latent-space representation),然后这种重构这种表示的输出进行工作。这种网络由两部分组成: 编码器:将输入压缩为潜在空间表示。可以用编码函数h = f(x)表示。 解码器:这部分旨在重构来自隐藏空间表示的输入。... 一、自编码器 自编码器(Autoencoder)是一种旨在将它们的输入复制到的输出的神经网络。他们通过将输入压缩成一种隐藏空间表示(latent-space representation),然后这种重构这种表示的输出进行工作。这种网络由两部分组成: 编码器:将输入压缩为潜在空间表示。可以用编码函数h = f(x)表示。 解码器:这部分旨在重构来自隐藏空间表示的输入。...
- 深度学习: 学习率 (learning rate) 作者:liulina603 致敬 原文:https://blog.csdn.net/liulina603/article/details/80604385 深度学习: 学习率 (learning rate) Intro... 深度学习: 学习率 (learning rate) 作者:liulina603 致敬 原文:https://blog.csdn.net/liulina603/article/details/80604385 深度学习: 学习率 (learning rate) Intro...
- 数据(Data):信息数据元素(Data Element):数据的基本单位,由若干数据项组成。数据项(Data Item):具有独立含义的最小单位。数据对象(Data Object):元素的集合数据结构(Data Structure):三要素(逻辑结构、存储结构、数据运算:增、删、改、查)逻辑结构:数据元素之间的关系(逻辑结构形式上用二元组,B=(K,R),K是结点的集... 数据(Data):信息数据元素(Data Element):数据的基本单位,由若干数据项组成。数据项(Data Item):具有独立含义的最小单位。数据对象(Data Object):元素的集合数据结构(Data Structure):三要素(逻辑结构、存储结构、数据运算:增、删、改、查)逻辑结构:数据元素之间的关系(逻辑结构形式上用二元组,B=(K,R),K是结点的集...
- 文/张志华近年来,人工智能的强势崛起,特别是去年AlphaGo和韩国九段棋手李世石的人机大战,让我们深刻地领略到了人工智能技术的巨大潜力。数据是载体,智能是目标,而机器学习是从数据通往智能的技术、方法途径。因此,机器学习是数据科学的核心,是现代人工智能的本质。通俗地说,机器学习就是从数据中挖掘出有价值的信息。数据本身是无意识的,它不能自动呈现出有用的信息。怎样才能找出有价值的东西呢?第一步要... 文/张志华近年来,人工智能的强势崛起,特别是去年AlphaGo和韩国九段棋手李世石的人机大战,让我们深刻地领略到了人工智能技术的巨大潜力。数据是载体,智能是目标,而机器学习是从数据通往智能的技术、方法途径。因此,机器学习是数据科学的核心,是现代人工智能的本质。通俗地说,机器学习就是从数据中挖掘出有价值的信息。数据本身是无意识的,它不能自动呈现出有用的信息。怎样才能找出有价值的东西呢?第一步要...
- 文/张志华中文翻译初稿下载免费阅读,仅供研究学习使用深度学习这个术语自2006年被正式提出后,在最近10年得到了巨大的发展,它使人工智能产生了革命性的技术突破,让我们切实地领略到人工智能改变人类生活的潜力。受人民邮电出版社的邀请,我的几位学生承担了Goodfellow, Bengio 和 Courville (后续简称他们为GBC)撰写的《Deep Learning》一书翻译工作。原著三位作... 文/张志华中文翻译初稿下载免费阅读,仅供研究学习使用深度学习这个术语自2006年被正式提出后,在最近10年得到了巨大的发展,它使人工智能产生了革命性的技术突破,让我们切实地领略到人工智能改变人类生活的潜力。受人民邮电出版社的邀请,我的几位学生承担了Goodfellow, Bengio 和 Courville (后续简称他们为GBC)撰写的《Deep Learning》一书翻译工作。原著三位作...
- 2017年3月9日,周四晚上8点30分,PaddlePaddle 官方开源社区成员李钊带来了主题为“深度学习第二课:个性化推荐”的交流。以下是主持人小冰整理的问答实录,记录了老师和读者问答的精彩时刻。问:看到你在生物信息学上使用深度学习技术,能分享一下深度学习在生物信息学、疾病预测等方面的应用吗?或者你们探索的经历?答:我们当初研究的是一种非编码 RNA,叫 microRNA,它对调控基因表... 2017年3月9日,周四晚上8点30分,PaddlePaddle 官方开源社区成员李钊带来了主题为“深度学习第二课:个性化推荐”的交流。以下是主持人小冰整理的问答实录,记录了老师和读者问答的精彩时刻。问:看到你在生物信息学上使用深度学习技术,能分享一下深度学习在生物信息学、疾病预测等方面的应用吗?或者你们探索的经历?答:我们当初研究的是一种非编码 RNA,叫 microRNA,它对调控基因表...
- 《深度学习》这本书是机器学习领域的重磅书籍,三位作者分别是机器学习界名人、GAN的提出者、谷歌大脑研究科学家 Ian Goodfellow,神经网络领域创始三位创始人之一的蒙特利尔大学教授 Yoshua Bengio(也是 Ian Goodfellow的老师)、同在蒙特利尔大学的神经网络与数据挖掘教授 Aaron Courville。只看作者阵容就知道这本书肯定能够从深度学习的基础知识和原理... 《深度学习》这本书是机器学习领域的重磅书籍,三位作者分别是机器学习界名人、GAN的提出者、谷歌大脑研究科学家 Ian Goodfellow,神经网络领域创始三位创始人之一的蒙特利尔大学教授 Yoshua Bengio(也是 Ian Goodfellow的老师)、同在蒙特利尔大学的神经网络与数据挖掘教授 Aaron Courville。只看作者阵容就知道这本书肯定能够从深度学习的基础知识和原理...
上滑加载中
推荐直播
-
ECS自动初始化实操
2025/06/24 周二 16:30-18:00
阿肯-华为云生态技术讲师
ECS是大家非常熟悉的服务,但大家真的用对了吗?服务器启动后需要人工部署应用吗?课程演示如何让ECS创建就能投入工作
回顾中 -
2025年度中国青年“揭榜挂帅”擂台赛·华为赛道直播宣讲会
2025/06/26 周四 15:00-16:30
李大帅 华为云算子专家 吴小鱼 华为云人工智能算法专家
挑战杯 | 2025年度中国青年“揭榜挂帅”华为赛道直播宣讲会火热来袭!聚焦前沿的昇腾全栈AI技术,核心挑战:大模型推理优化。华为云人工智能算法专家+算子专家联袂坐镇直播间,深度解析赛题,助你赢取大奖!技术高手们,速来直播间,获取通关秘籍!
即将直播
热门标签