- Spark是一个通用的并行计算框架,由加州伯克利大学的AMP于2009开发,并于2010年进行开源,后续发展为大数据领域的最活跃的开源项目之一。Spark在各大场景中扮演着重要的角色,比如能够进行复杂的批数据处理,基于实时数据流的数据处理和历史数据的交互式查询。在实时大数据应用的场景下,相比于Hadoop的高吞吐,低响应的特点,spark通过内存计算能力极大提高了大数据处理速度,对实... Spark是一个通用的并行计算框架,由加州伯克利大学的AMP于2009开发,并于2010年进行开源,后续发展为大数据领域的最活跃的开源项目之一。Spark在各大场景中扮演着重要的角色,比如能够进行复杂的批数据处理,基于实时数据流的数据处理和历史数据的交互式查询。在实时大数据应用的场景下,相比于Hadoop的高吞吐,低响应的特点,spark通过内存计算能力极大提高了大数据处理速度,对实...
- 在基于mapreduce思想的计算模型里,Shuffle是map和reduce的纽带。计算框架对大数据分而治之,对处理数据进行分块并行处理,当需要对分块数据做聚合处理时,多个分块的数据在map阶段转为k-v结构,然后按key分区,在reduce阶段对各自分区的数据进行计算归并。map和reduce中间对数据做分区并规整的过程,就是shuffle的过程。在spark中,对shuffle也从RD... 在基于mapreduce思想的计算模型里,Shuffle是map和reduce的纽带。计算框架对大数据分而治之,对处理数据进行分块并行处理,当需要对分块数据做聚合处理时,多个分块的数据在map阶段转为k-v结构,然后按key分区,在reduce阶段对各自分区的数据进行计算归并。map和reduce中间对数据做分区并规整的过程,就是shuffle的过程。在spark中,对shuffle也从RD...
- 脏数据对数据计算的正确性带来了很严重的影响。因此,我们需要探索一种方法,能够实现Spark写入Elasticsearch数据的可靠性与正确性。 脏数据对数据计算的正确性带来了很严重的影响。因此,我们需要探索一种方法,能够实现Spark写入Elasticsearch数据的可靠性与正确性。
- Spark SQL是Spark系统的核心组件,为来自不同数据源、不同格式的数据提供了结构化的视角,让用户可以使用SQL轻松的从数据中获取有价值的信息。DLI服务提供了强大的Spark SQL查询分析能力,并且全面兼容Spark SQL语法。本文将介绍Spark SQL的运行流程,以及过程中的各个重要组成部分。Spark SQL是什么在Spark中,Spark SQL并不仅仅是狭隘的SQL... Spark SQL是Spark系统的核心组件,为来自不同数据源、不同格式的数据提供了结构化的视角,让用户可以使用SQL轻松的从数据中获取有价值的信息。DLI服务提供了强大的Spark SQL查询分析能力,并且全面兼容Spark SQL语法。本文将介绍Spark SQL的运行流程,以及过程中的各个重要组成部分。Spark SQL是什么在Spark中,Spark SQL并不仅仅是狭隘的SQL...
- Async-profiler可以观测运行程序中每一段代码所占用的cpu的时间和比例,从而可以分析并找到项目中占用cpu时间最长的代码片段,优化热点代码,达到优化内存的效果。它具有特定于HotSpot的API,以收集堆栈跟踪并跟踪内存分配,探查器可与基于HotSpot JVM的OpenJDK,Oracle JDK和其他Java运行时一起使用。 Async-profiler可以观测运行程序中每一段代码所占用的cpu的时间和比例,从而可以分析并找到项目中占用cpu时间最长的代码片段,优化热点代码,达到优化内存的效果。它具有特定于HotSpot的API,以收集堆栈跟踪并跟踪内存分配,探查器可与基于HotSpot JVM的OpenJDK,Oracle JDK和其他Java运行时一起使用。
- 本文介绍了如何创建cce、安装spark,并将spark的任务提交到cce中运行。本文介绍的是将spark用allinone的方式安装到cce的node结点上。以及如何在cce上运行spark任务 本文介绍了如何创建cce、安装spark,并将spark的任务提交到cce中运行。本文介绍的是将spark用allinone的方式安装到cce的node结点上。以及如何在cce上运行spark任务
- spark streaming 是在spark core基础上的一个高吞吐、高容错的无状态的微批处理框架,其是基于批量数据的处理。本文的设定是你对spark运行机制和rdd (the resilient distributed dataset)编程有一定的了解。 spark streaming 是在spark core基础上的一个高吞吐、高容错的无状态的微批处理框架,其是基于批量数据的处理。本文的设定是你对spark运行机制和rdd (the resilient distributed dataset)编程有一定的了解。
- 📋前言📋 💝博客主页:红目香薰_CSDN博客-大数据,计算机理论,MySQL领域博主💝 ✍本文由在下【红目香薰】原创,首发于CSDN✍ 🤗2022年最大愿望:【服务百万技术人次】🤗 💝初始环境地址:【spark环境搭建(idea版本)_红目香薰-CSDN博客】💝 环境需求 环境:win... 📋前言📋 💝博客主页:红目香薰_CSDN博客-大数据,计算机理论,MySQL领域博主💝 ✍本文由在下【红目香薰】原创,首发于CSDN✍ 🤗2022年最大愿望:【服务百万技术人次】🤗 💝初始环境地址:【spark环境搭建(idea版本)_红目香薰-CSDN博客】💝 环境需求 环境:win...
- 导读:业务系统或者日志系统产生了大量的原始数据,我们根据业务场景需求将数据保存到不同的存储中。然而,数据只有通过整合、加工、计算,才能提取出其潜在的信息,让数据变为资产,从而实现数据的价值。Moonbox就是这样一款计算服务平台,在敏捷大数据(Agile BigData)理论的指导下,围绕“计算服务化”和“数据虚拟化”两个核心概念进行设计,支持多种数据源混合计算。Moonbox的设计理念是怎... 导读:业务系统或者日志系统产生了大量的原始数据,我们根据业务场景需求将数据保存到不同的存储中。然而,数据只有通过整合、加工、计算,才能提取出其潜在的信息,让数据变为资产,从而实现数据的价值。Moonbox就是这样一款计算服务平台,在敏捷大数据(Agile BigData)理论的指导下,围绕“计算服务化”和“数据虚拟化”两个核心概念进行设计,支持多种数据源混合计算。Moonbox的设计理念是怎...
- 本书摘自《Spark机器学习进阶实战》——书中的第3章,第3.4.2节,作者是马海平、于俊、吕昕、向海。 本书摘自《Spark机器学习进阶实战》——书中的第3章,第3.4.2节,作者是马海平、于俊、吕昕、向海。
- 本书摘自《Spark机器学习进阶实战》——书中的第3章,第3.4.1节,作者是马海平、于俊、吕昕、向海。 本书摘自《Spark机器学习进阶实战》——书中的第3章,第3.4.1节,作者是马海平、于俊、吕昕、向海。
- 本书摘自《Spark机器学习进阶实战》——书中的第1章,第1.4.1节,作者是马海平、于俊、吕昕、向海。 本书摘自《Spark机器学习进阶实战》——书中的第1章,第1.4.1节,作者是马海平、于俊、吕昕、向海。
- 在 Kubernetes 集群中部署 Apache Spark,需要你具备对 Kubernetes 的工作原理、Spark 的架构以及云原生应用的理解。 前期准备工作在进行 Spark 的部署之前,需要对你的 Kubernetes 环境做好充分的准备。这包括 Kubernetes 集群的搭建以及基础工具的安装,比如 kubectl 和 Helm 等。这些步骤对于成功部署 Spark 至关重要... 在 Kubernetes 集群中部署 Apache Spark,需要你具备对 Kubernetes 的工作原理、Spark 的架构以及云原生应用的理解。 前期准备工作在进行 Spark 的部署之前,需要对你的 Kubernetes 环境做好充分的准备。这包括 Kubernetes 集群的搭建以及基础工具的安装,比如 kubectl 和 Helm 等。这些步骤对于成功部署 Spark 至关重要...
- 本文探讨了Apache Spark MLlib与Java结合的最佳实践,涵盖基础认知、数据预处理、模型选择与构建、训练调优及部署应用。Spark以其分布式计算能力著称,MLlib提供丰富的机器学习算法,Java则拥有成熟生态。两者结合可高效处理大规模数据集,构建灵活的机器学习应用。通过RDD和DataFrame API进行数据操作,利用特征工程工具优化数据,选择合适的分类、回归或聚类模型。 本文探讨了Apache Spark MLlib与Java结合的最佳实践,涵盖基础认知、数据预处理、模型选择与构建、训练调优及部署应用。Spark以其分布式计算能力著称,MLlib提供丰富的机器学习算法,Java则拥有成熟生态。两者结合可高效处理大规模数据集,构建灵活的机器学习应用。通过RDD和DataFrame API进行数据操作,利用特征工程工具优化数据,选择合适的分类、回归或聚类模型。
- Windows下,大数据分析与挖掘环境配置(实现Hadoop、Java、SSH免密互连、Scala、Spark、Python3.7) Windows下,大数据分析与挖掘环境配置(实现Hadoop、Java、SSH免密互连、Scala、Spark、Python3.7)
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签