- 1.找准关键词,确定考点。选项中没有具体考点的项,就看选项中有没有总的包括项涵盖这个考点的。 以下题为例: 【单选】项目团队成员要求使用移动通讯程序,以便更快的审批有关成本,进度的变更,请问项目经理需要参考什么文件?( ) A项目管理计划 B进度基准 C相关方管理计划 D进度管理计划 解析:正确答案为:A。关键词“变更”,... 1.找准关键词,确定考点。选项中没有具体考点的项,就看选项中有没有总的包括项涵盖这个考点的。 以下题为例: 【单选】项目团队成员要求使用移动通讯程序,以便更快的审批有关成本,进度的变更,请问项目经理需要参考什么文件?( ) A项目管理计划 B进度基准 C相关方管理计划 D进度管理计划 解析:正确答案为:A。关键词“变更”,...
- 前言: 本专栏主要结合OpenCV4,来实现一些基本的图像处理操作、经典的机器学习算法(比如K-Means、KNN、SVM、决策树、贝叶斯分类器等),以及常用的深度学习算法。 系列文章,持续更新: ... 前言: 本专栏主要结合OpenCV4,来实现一些基本的图像处理操作、经典的机器学习算法(比如K-Means、KNN、SVM、决策树、贝叶斯分类器等),以及常用的深度学习算法。 系列文章,持续更新: ...
- 如果不能将一棵决策树可视化,我觉的很难学好决策树这一部分 安装好Graphviz 为什么要安装呢 因为要使用sklearn自带的 export_graphviz http://www.graphviz.org/ 设置环境变量 pip install pydotplus 测试一下 # -*- coding:utf-8 -*- # time :201... 如果不能将一棵决策树可视化,我觉的很难学好决策树这一部分 安装好Graphviz 为什么要安装呢 因为要使用sklearn自带的 export_graphviz http://www.graphviz.org/ 设置环境变量 pip install pydotplus 测试一下 # -*- coding:utf-8 -*- # time :201...
- 在决策树中有一个很重要的概念就是深度 没错决策树很容易过拟合 从iris来看下所谓的过拟合 环境 jupyter notebook 导入包 import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl from sklea... 在决策树中有一个很重要的概念就是深度 没错决策树很容易过拟合 从iris来看下所谓的过拟合 环境 jupyter notebook 导入包 import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl from sklea...
- 上次探究了深度对决策树的影响,发现深度越大,容易发生过拟合 没错今天来说所谓的剪枝和随机森林 剪枝总体思路: 由完全树T0开始,剪枝部分结点得到T1,再次剪 枝部分结点得到T2…直到仅剩树根的树Tk; 在验证数据集上对这k个树分别评价,选择损失 函数最小的树Tα 首先了解上面是剪枝系数 但是主要用随机森林算法来防止过拟合,也是决策树的加强版 那什么... 上次探究了深度对决策树的影响,发现深度越大,容易发生过拟合 没错今天来说所谓的剪枝和随机森林 剪枝总体思路: 由完全树T0开始,剪枝部分结点得到T1,再次剪 枝部分结点得到T2…直到仅剩树根的树Tk; 在验证数据集上对这k个树分别评价,选择损失 函数最小的树Tα 首先了解上面是剪枝系数 但是主要用随机森林算法来防止过拟合,也是决策树的加强版 那什么...
- 决策树和随机森林 信息熵 熵 联合熵 条件熵 互信息 决策树学习算法 信息增益 ID3、C4.5、CART Bagging与随机森林 概念部分 思考:两点分布的信息熵 import numpy as np import matplotlib.pyplot as plt p = np.linspace(0.0000001,1,100... 决策树和随机森林 信息熵 熵 联合熵 条件熵 互信息 决策树学习算法 信息增益 ID3、C4.5、CART Bagging与随机森林 概念部分 思考:两点分布的信息熵 import numpy as np import matplotlib.pyplot as plt p = np.linspace(0.0000001,1,100...
- 随机森林(Random Forest) 随机森林是许多决策树组成的模型。这个模型不仅仅是一个森林,而且它还是随机的,因为有两个概念: 随机抽样的数据点; 基于要素子集拆分的节点; 随机抽样 随机森林背后的关键是每棵树在数据点的随机样本上训练。... 随机森林(Random Forest) 随机森林是许多决策树组成的模型。这个模型不仅仅是一个森林,而且它还是随机的,因为有两个概念: 随机抽样的数据点; 基于要素子集拆分的节点; 随机抽样 随机森林背后的关键是每棵树在数据点的随机样本上训练。...
- Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-... Machine Learning | 机器学习简介 Machine Learning | (1) Scikit-learn与特征工程 Machine Learning | (2) sklearn数据集与机器学习组成 Machine Learning | (3) Scikit-learn的分类器算法-k-近邻 Machine Learning | (4) Scikit-...
- @Author:Runsen 决策树是解决分类和回归问题的一种常见的算法。决策树算法采用树形结构,每一次选择最优特征,来实现最终的分类,因此决策树是一种递归的算法。但是,决策树很容易产生过拟合现象,最常见的处理方法进行剪枝的处理和限制决策树的深度。随机森林,是由多棵决策树集成,因此随机森林一种基于树的模型集成学习方法,下面,将详细介绍决策树和随机森林算法。 决策树 ... @Author:Runsen 决策树是解决分类和回归问题的一种常见的算法。决策树算法采用树形结构,每一次选择最优特征,来实现最终的分类,因此决策树是一种递归的算法。但是,决策树很容易产生过拟合现象,最常见的处理方法进行剪枝的处理和限制决策树的深度。随机森林,是由多棵决策树集成,因此随机森林一种基于树的模型集成学习方法,下面,将详细介绍决策树和随机森林算法。 决策树 ...
- 这是我个人的机器学习入门清单及路线,所以没有像很多收藏夹那样大而全,一来学不完,二来给自己压力。这是个人的路线。算是个人记录,也给大家参考,如有什么不足之处,欢迎指教。 前置知识及技能: 1、线性代数基础,如果没的话,还是先学了这门课在研究吧,不然会哭的。 2、学会python就行了。R也可以用用。 做了个流程图,来展示下我的学习路线。 除了入门课程外,其他四... 这是我个人的机器学习入门清单及路线,所以没有像很多收藏夹那样大而全,一来学不完,二来给自己压力。这是个人的路线。算是个人记录,也给大家参考,如有什么不足之处,欢迎指教。 前置知识及技能: 1、线性代数基础,如果没的话,还是先学了这门课在研究吧,不然会哭的。 2、学会python就行了。R也可以用用。 做了个流程图,来展示下我的学习路线。 除了入门课程外,其他四...
- 文章目录 决策树 基尼系数 CART 算法 预剪枝与后减枝 回归树 Code Titanic 乘客生存预测流程 模块 1:数据探索: 模块 2:数据清洗 模块 3:特征选择 模块 4:决策树模型 模块 5:模型预测 & 评估 模块 6:决策树可视化 决策树模型使用技巧总结 完整代码 决... 文章目录 决策树 基尼系数 CART 算法 预剪枝与后减枝 回归树 Code Titanic 乘客生存预测流程 模块 1:数据探索: 模块 2:数据清洗 模块 3:特征选择 模块 4:决策树模型 模块 5:模型预测 & 评估 模块 6:决策树可视化 决策树模型使用技巧总结 完整代码 决...
- http://www.jianshu.com/p/c8f1f516e9ea from math import log import operator def calcShannonEnt(dataSet): numEntries = len(dataSet) lableCounts = {} for featVec in dataSet: c... http://www.jianshu.com/p/c8f1f516e9ea from math import log import operator def calcShannonEnt(dataSet): numEntries = len(dataSet) lableCounts = {} for featVec in dataSet: c...
- 随机森林原理 2017-08-06 18:56 80人阅读 评论(0) 收藏 举报 分类: 机器学习(17) 转载自:http://www.zilhua.com/629.html &nb... 随机森林原理 2017-08-06 18:56 80人阅读 评论(0) 收藏 举报 分类: 机器学习(17) 转载自:http://www.zilhua.com/629.html &nb...
- 参考:http://www.cnblogs.com/fcyworld/p/6243012.html Python 0/1背包、动态规划 0/1背包问题:在能承受一定重量的背包中,放入重量不同,价值不同的几件物品,怎样放能让背包中物品的价值最大? 比如,有三件物品重量w,价值v分别是 w=[5,3,2] v=[9,7,8] 包的容量是5,也就是... 参考:http://www.cnblogs.com/fcyworld/p/6243012.html Python 0/1背包、动态规划 0/1背包问题:在能承受一定重量的背包中,放入重量不同,价值不同的几件物品,怎样放能让背包中物品的价值最大? 比如,有三件物品重量w,价值v分别是 w=[5,3,2] v=[9,7,8] 包的容量是5,也就是...
- 原文:http://www.jianshu.com/p/6eecdeee5012 决策树是一种简单高效并且具有强解释性的模型,广泛应用于数据分析领域。其本质是一颗由多个判断节点组成的树,如: 决策树 在使用模型进行预测时,根据输入参数依次在各个判断节点进行判断游走,最后到叶子节点即为预测结果。 如何构造决策树 决策树算法的... 原文:http://www.jianshu.com/p/6eecdeee5012 决策树是一种简单高效并且具有强解释性的模型,广泛应用于数据分析领域。其本质是一颗由多个判断节点组成的树,如: 决策树 在使用模型进行预测时,根据输入参数依次在各个判断节点进行判断游走,最后到叶子节点即为预测结果。 如何构造决策树 决策树算法的...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签